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An Expectation-Maximization Algorithm Based
Kalman Smoother Approach for Event-Related
Desynchronization (ERD) Estimation from EEG

Mohammad Emtiyaz Khan, and Deshpande Narayan Dutt

Abstract—In this paper, we consider the problem of event- on the adaptive-autoregressive (AAR) model has been pro-
related desynchronization (ERD) estimation. In existing ap- posed [8]. The AAR model is also called a time-varying AR
proaches, model parameters are usually found manually through (TVAR) model, and has been applied extensively for EEG
experimentation, a tedious task that often leads to suboptimal . - .
estimates. We propose an expectation-maximization (EM) al- SIgnaI analy_S|s [12], [13]..The TVAR coefficients are ,usy'a"
gorithm for model parameter estimation which is fully auto- €sStimated with the recursive-least square (RLS) algoriimeh
matic and gives optimal estimates. Further, we apply a Kalman classified with a linear-discriminator. It is shown in [5]ath
smoother to obtain ERD estimates. Results show that the EM the TVAR coefficients capture the EEG patterns and improve
algorithm significantly improves the performance of the Kalman classification accuracy. However, in this method, values of

smoother. Application of the proposed approach to the motor- - .
imagery EEG data shows that useful ERD pattemns can be Various parameters (e.g. model order, update coefficiames)

obtained even without careful selection of frequency bands. required, which are usually difficult to find.
Index Terms— Event-related desynchronization, expectation- The TVAR model can al_so be ertten.as a state-space
maximization algorithm, Kalman smoother. model. The advantage of this formulation is that the optimal

estimates can be obtained using the Kalman filter [14]. The
Kalman filter is an optimal estimator in the mean-squareeens
I. INTRODUCTION and other adaptive algorithms like the RLS algorithm can be
o derived as a special case of the Kalman filter [15]. If the
VENT-RELATED desynchronization (ERD) and syn+,re measurements are available, smoothing equations can
L chronization (ERS) are used to describe the decrease gadyseq to further improve the estimation performance. The
increase in activity in the EEG signal, caused fiyysical  «4iman filters along with the smoothing equations are uguall
events [1]. Experiments show that the preparation, planifatarred to as a Kalman smoother [16], [17]. The Kalman
and even imagination of specific movements result in ERD {},qqther has been used for ERD estimation in [18], and an
mu and central-beta rhythms [2]-[4]. In addition ERD shows,oqved tracking of ERD pattern is obtained. However in
significant differences in EEG activity between left- orig s formulation as in the AAR model formulation, settingsth
hand movements [5]. These differences can be used t0 bujidye| parameters is a problem. To make it easier to set the

csglmur;i_citiﬁn chémnels knownfals_brain-gé)_mputer_ irtf[eﬂca‘:ﬁarameters, a very simple random-walk model is used.
(BCI) which have been very useful in providing assistance ©We can see that in all the methods discussed above, finding

paralyzed patients [6].

in large training datasets to estimate model parameters. Th
aper is organized as follows. In Section Il, we describe the
§?ate-space formulation of time-varying AR (TVAR) model. |

proposed for quantification of ERD. In this method, ER
estimates are obtained by computing an averaged intér-t

variance of a band-pass filtered signal. Useful informaﬁ%'ection Ill, we describe our algorithm for ERD estimatiom. |

about ERD_tlme courses and_ the hemispherical asymmeg ction 1V we discuss the results followed by a conclusion in
can be obtained with these estimates. However the IV methg ction V

cannot be used for on-line classification because it reguire
averaging over multiple trials [5]. Another problem is that
it requires careful selection of frequency bands for ERD

estimation. To overcome these problems, a method based- TIME-VARYING AUTOREGRESSIVE(TVAR) MODEL
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Here {al}}_, are the TVAR coefficients p is the model important point to note is that finding values of parameters i
order andv; is the i.i.d. Gaussian noise with zero meaulifficult even when the number of parameters is small. This
and variances2. We denote a sequence of measurements lsybecause it is usually done manually through trial-andrer
Yir = {y1,...,yr}. We also assume TVAR coefficients toMost of the time, manual settings give sub-optimal solgion
follow a Gauss-Markov process: and an equally good automatic tuning is always preferred. It
a well-known fact that if anya priori knowledge is available,
then it should be used in formulation of the model [15]. We
wherex, = [ala}...at] is the array of TVAR coefficients, propose the use of an EM algorithm which allows model
w; ~ N(0,Q) is the i.i.d. noise,A is the transition matrix parameters to be estimated using training datasets. Walgesc
and Q is a symmetric, positive definite matrix (both of sizdéhe proposed approach in next section.

p X p). These equations can be written as a single state-space

Xep1 = Axy + wy (2)

model: I1l. EM A LGORITHM BASED APPROACH
Measurement Equation; = h;x; + v; (3)  We split ERD estimation into three sub-problems:
State Equationx; 1 = Ax; + wy 1) Estimation of the model parametéx.

where hy = [y;_1ye_s...y:_) is the vector of the past 2) Estimation of the TVAR coefficientfx; }.
p measurementsx; is called the state of the system. The 3) Estimation of the ERD given TVAR coefficients.
initial state is assumed to be Gaussiap:~ N (pu,, Xo). For We first present solution to (2), followed by (1) and (3).
simplicity, the initial state vector and noises are assutodzk
independent of each other. All the model parameters togethe L -
are denoted by = {4, 02, Q, po, o - A. Estimation of TVAR coefficients

We now compare our model with two previous approachesGiven the measurement sequentgr, we want to find
and show that they are special cases of our model. Tastimates of the TVAR coefficients. For this purpose we
first approach is based on an AAR model [8] wherein RL8se the Kalman filter [14] which gives the optimal estimate
algorithm is used to estimate,. It is shown in [15] that the in the mean-square sense (in this section, we assume that
model used by the RLS algorithm is a special case of the stdfee model parameters are available). We use the following
space model given by Eq. (3), and can be written as followdefinitions for the conditional expectations of the stated a
the corresponding error covariances:

Yo = hyx, + v
(4) )A(t\s =F (Xt‘Yl:s)

—1/2
Xpp1 = A 2%,

where is the forgetting factor for the RLS algorithm. Rewrit- Piios = B <(th = Xiyfs) (Xey = Xy ) |Y1:s)
ing the AAR model as in Eq. (4) allows an easy comparisoE

(6)

with our model. There are two important differences. Firs, or convenience, YVhen ==t Ptlvtﬂ;’" IS erltten askys.
. L : . he state estimatgk,;, P;.) can be obtained with the Kalman
there is no state noise in this model. Second, mattixs

constrained to a scaled identity matrix which depends on tﬁléer, which is given as follows:

choice of \. Note that the only tuning parameter in the AAR %o = AR Ko
model is\. - /

The second approach, proposed in [18], uses a random-walk Pye—r = AP“l't*l/} +Q - (8)

model given by the following equation: Ky = Py_1h(hPy_hy+o2)” )

X4l = X¢ + Wy (5) Xep = Xyg—1+ f/(t(yt —hXye1) (10)

Py = (I—Kihy)Py (1D

Here again, there are two differences. First, the noisercova

ance is constrained to a scaled identity matéx= 021 (¢2,  with the initial conditionx; |y = 1o and Py = 2. Here K,

is @ non-negative real number). Secontljs assumed to be js called the Kalman gain.

an identity matrix. With these assumptions the only unknown Note that the above Kalman filter is a time-varying filter as
parameter iwr;,. However setting this parameter is even morg, depends on time. Hence the gain and the error covariance
difficult than A as its range is not knownm (e (0,1)). will also vary with time and can not be computedpriori,

Both the AAR and the random-walk model impose connlike the classical Kalman filter [14]. Hence it will receir
straints to reduce the number of tuning parameters. There gfore computation than the classical Kalman filter. However
at least two major consequences because of this. First, Re increase in computation will not be very large as we
same model is assumed for all elements of the state vecie dealing with scalar measurements. Another important
Secondly, all the elements are assumed to be independengifierence is in the convergence of the filter. Rg, varies with
each other. These assumptions may deteriorate the estimaghe measurement sequence, it doesn’t converge to a steady-
performance (we will show this in Section IV-A). Anotherstate value. To monitor convergence we need to compute the

Un i . ) ., expectation ofP;, with Monte-Carlo simulations and check

n literature, these are also called TVAR “parameters”, haweo avoid

confusion with model parameters we will always use the terneffazents” ”_c it settlgs down to a value (see [19] for an example of a
for these, and reserve the term “parameters” for model parasnete time-varying Kalman filter).
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If the future measurements ;.. are available, then these 2) M-step: By direct differentiation of Q, we get the
can be further used to improve the accuracy of the estimatédlowing expressions of the model parameter estimates:
The smoothedestimates [20] can be obtained as follows:

T T
-1
Ak+1
J = PﬂtA'Pt;ll‘t (12) AL = (Z St,t—llT) (Z St—1|T> (20)
t=2 t=2
Xr = Xp + Je(Kevyr — Xesape) (13) 1 T T
/ Ak+1 Ak+1
Pt|T = Pt\t + Jt(PtJrl‘T — PtJrl‘t)Jt (14) Q * - T_1 (Z St|T —A + Zst_l,ﬂT) (21)
t=2 t=2
Note that it is the designer’s choice whether to use smogthin ftt 1 I
equations or not. For example, during an on-line analykss, t o2 = — Z(yf -2 h;f(ﬂTyt + h;St\Tht) (22)
Kalman smoother will give estimates only after the end of the T t=1
experiment, which may not be acceptable. But for an off-line ﬂ’f“ = Xyr (23)
analysis, getting the estimates after the experiment may no . N
mattir. 9 b d S = Si- X1rXy|1r (24)

where k denotes the current iteration. We denote all these

B. Estimation of the model parameters with an EM algorith/@Stimates together &8, . _

In thi " q ibe th fimati ¢ del Both E and M steps are iterated, and convergence is
n this section, we describ€ the estimation of MOAel P, nitored with the conditional likelihood function obtaih

rameters with an EM algorithm. The objective is to COM:< follows:

pute an estimate o® given a measurement sequence. For
Gaussian models, maximum likelihood (ML) estimate is an Ak d ' , 5
obvious choice [20], which is given as follow®,;;, = ogp(Y1.7|07) = Zlog <N<htxt\t*1’htpt\t*1ht+Uv))
arg maxe log p(Y1.7|©), wherep(Y1.7|O) is the probability =t (25)
density function of the measurements (also called likei)o The algorithm is said to have converged if the relative iasge
Note that because of the dependence on the states, whichjgréhe likelihood at the current time step compared to the
not available, direct maximization is not possible. Thebet  previous time is below a certain threshold.
is to maximize the likelihood with respect to two unknowns: The above algorithm can be easily extended to multi-
states and model parameters. The expectation-maximizatifle measurements. Assuming trials to be i.i.d., the Kalman
(EM) algorithm takes an iterative approach by first maximigi smoother estimates need to be averaged over all measurement
the likelihood with respect to the states in the E-step, &ed t sequences. Substitution in M-step equations will then give
maximizing with respect to the parameters in the M-step. Tlhige estimate of the parameters corresponding to the nultipl
EM algorithm was first introduced in [22], and has been usgfeasurements.
extensively for model parameter estimation [23]-[25]. Hi¢  There are a few practical issues which need to be addressed
step maximum is given by the expected value of the complgigen implementing the above algorithm. The first issue is of
log-likelihood function as follows: numerical error. Because of its iterative nature, the élgor
_ is susceptible to numerical round-off errors and can dizer

Q = Exy llogp(Viur X1.7[O)] (15) To solvepthe numerical problem, we used a square-root filgier
The M-step involves the direct differentiation @ to find [26] implementation in this paper. The other issue concerns
the values of the parameters. These computations are dongalization. Some methods are available for initiativa
iteratively and convergence of the algorithm is guaranfg@ll  (e.g. subspace identification method in [25], [27]). In théper

We now describe an EM algorithm for our model. Fowe use a simpler method by assuming local stationarity. We
derivation, we follow the procedure given in [24], and distai divide the dataset into overlapping windows, and for each of
are given in Appendix A. A summary is given below: these, we finc; ando? using MATLAB’s ARYULE function.

1) E-step: This step involves the computation ¢f given From these local estimates, we find maximum likelihood
the measurement§ . and an estimate of the model parametegstimates of). We setA to identity and the initial state mean
from the previous iteratior®,. As shown in Appendix AQ and covariance to zero and identity matrix respectively.
depends on the following three quantities:

Xy 7= E(x¢[Y1.7) 1e6) C Estimation of ERD

Syr=Exx,|Y1.r) = Pyr +)A(t\T§(;\T (17) In this section, we des_cribe the es_timatiorj of ERD using
the TVAR coefficient estimates obtained with the Kalman
smoother. The approach is motivated by an earlier analysis
The first two quantities can be obtained using the Kalma$ing an AR spectrum discussed in [28]. We use a similar
smoother as described in Section Ill-A. The last quantity canethod, but with a time-varying AR spectrum. Given TVAR

be obtained as described in [20] with the following equatiogoefficients, time-varying spectrum estimates can be oéthi
as follows,

St,tfl\TEE(XtX;—ﬁYl:T) = Pt,tfuT =+ &t|T§(;—1\T (18)

Pt,t—uT = thlpt\T &
H(tﬂ f) = |1 _ Zle &ie,QWif/fS (26)

Q is then obtained using Eq. (34) given in Appendix A.
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Here f, is the sampling frequency;! is the i** element of g 1 5
the estimated state-vector apids the frequency in the range > \ WMWW/\NWN\W\/\
[0, fs/2]. As ERD is seen only in specific frequency bands, g 05 0
we average the spectrum to get band-powgr E
fo % o5 1% 128 256
PB (t) _ Z H(t,f)2 (27) Real part

MSE

f=h &/
where (f1, f2) is the band of interest. The band can be set \/

through visual inspection or by using a threshold. We will

show later that a very precise selection of the frequency ban 0.8 0.9 10 0.1 0.2
is not required, and that a rough setting serves the purpose. A o>

An ERD estimate is then found by computing the relative W
band-power with respect to a reference window. First, A @)
reference power is obtained by averaging band-power over
time interval, where the ERD pattern is expected to be abse 2
(most probably at the start of the experiment). ERD is the
obtained with the following equation: 15

— -
ERD(t) = Pp(t) — Pres (28) © 1
Pr'ef

where P,..; = ZtTiTl Pg(t) is the reference band-power 0.5

for time T} to T,. The ERD estimates obtained are further
smoothed by averaging over a time window. The above pr¢ “g=96f

cedure is similar to the IV method [7] where ERD estimate: -0.8

are obtained in the time domain by computing the variance ¢ 1t

a band-pass filtered EEG. The difference is that the IV methc ‘

does computation in the time domain, while our method is il 0 128 256
the frequency domain. For the IV method a careful selectio Time (t)

of the frequency band is required. We will show in Sectior b

IV that our approach does not require such precision for th ()

frequency band. Fig. 1. (a) The root evolution and a typical realization af hR(2) process
along with the optimization o ando2, (b) The TVAR coefficient estimates
with EMKS (thick black line), KS (thin black line) and RLS {thgray line).

IV. RESULTS The actual TVAR coefficients are shown with a thick gray line.
In this section, we study the effect of model paramete.

estimation with the EM algorithm. We compare the proposed i L

approach with two previous approaches based on the Rﬁ@qlated modell roolt .and a typlcaL realization are sh0\;vn

algorithm and the Kalman smoother and discussed in [§) Fig- 1(@). A s;]gna is generated for 2 seconds,hsamp edl

and [18] respectively (see Section I for details of thesd 128 Hz and the noise variance is set to 0.2. The mode

approaches). In the rest of the paper, we will refer to thegéder is set top = 2, equal to the actual model order.

approaches as RLS and KS respectively, while we call oljpe model parameters are estimated with the EM algorithm
approach EMKS. using a dataset of 100 sequences. The same dataset is used

to set parameters for RLS and KS.and o2 are optimized
) ) for minimum mean-square error. The optimization resules ar
A. Simulation Results shown in Fig. 1(a), and the values obtained &re 0.898 and
We compare the approaches for two criteria relevant to thé = 0.037. TVAR coefficients are then estimated with these
estimation of ERD: (i) tracking of the TVAR coefficients, ancharameters.
(il) spectrum estimation of a nonstationary signal. Notatth Estimates for one realization are shown in Fig. 1(b). From
this evaluation requires time-varying simulation data.gém- these figures, it is clear that EMKS gives the best performanc
erate a smoothly time-varying signal, we consider nondiineAlthough RLS and KS track the first coefficient to some extent,
models. This helps us to study the effect of approximatingthey do not track the second coefficient very well. This is
nonlinear signal, such as an EEG signal, with a TVAR modddecause the same model is assumed for both coefficients (see
However a direct comparison of the model parameter estgnagection Il). The optimization function is biased towards th
is not possible for these cases as the actual model will be ndirst coefficient as its magnitude is higher, and the estirfate
linear. Hence we base our comparison on the performancettoé second coefficient suffers. The model parameters dstiima
a filter using the estimated model. with EM algorithm do not impose any such constraint on the
For the first criteria, we generate a smoothly varying AR(2nodel, and both coefficients have different models. The mean
process (see [18] for simulation details). The trace of thand variances of the estimates for 100 realizations are rshow
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EMKS B. Motor-Imagery EEG Data

RLS
In this section, we apply our method to the motor-imagery

KS
1.6

al m

08 dataset provided by the Graz University of Technology. A
06 detailed description of the dataset can be found in [30]. In
a? M M the experiment, the subject’s task was to control a bar in one

| dimension by imagining left- or right-hand movements. The
% 128 256 0 128 2560 128 26 experiment included 7 runs with 40 trials each of 9 seconds
(hence 280 trials). Three bipolar EEG signals were measured
Fig. 2. The average behavior: mean (thick black line) and “meda” it ; i
(thin black line) with RLS, KS and EMKS. The actual TVAR coeféints are over positionsCs, C; andCy. The fII’_St 2 _SGCOHde W.ere quiet
shown with a thick gray line. and att = 2 seconds, an acoustic stimulus indicated the
beginning of the trial. A cross (‘+') was displayed for 1 sedo
20 Then, att = 3 seconds, an arrow pointed either to the left or
u \j k/ right was displayed as a cue stimulus. The subject was asked
= . . . . . .
" to imagine moving the bar in the direction of the cue. The
07 0.8 0.9 0 0.001 0.002 RLS H
A 2 2 number of left-hand cues were equal to the number of right-

SMWNWWWMW hand cues. For our analysis, we use model order-ef5, and
> 0

set\ = 0.97 and o2, = 0.001 for RLS and KS respectively.
- * on visual inspection. For the EM algorithm, model paranseter
10 are estimated with 50 trials. For single trial results, thesen
EMKS dataset does not belong to the training dataset. Howewver, fo

3
Estimated f
.
o
———
=
~
[

Estimated f
5

These parameters are chosen to the best of our ability based
0 128 256 0 128 256

Time () Time () average behavior the training dataset is included, be¢hase
@ (b) would be too little data otherwise.

i o ] ] ) Fig. 4 shows the time-varying spectrum estimates for the
Fig. 3. (Left) Optimization of parameters along with a redii@a of linear

FM signal and the IF estimates with EMKS (thick black line), KBin black first 5 seconds of a trial. This trial shows a decrease in iagtiv
line) and RLS (thin gray line) and the actul (thick gray line). (Right) Mean between 2 to 3 seconds and then after 4 seconds. We can

(thick black line) and “meant-3c limit” (thin black line) for each method. clearly see that the EMKS estimates capture these patterns
accurately. Although KS detects the decrease in activity, t

o _ estimates have noisy peaks and are not smooth. RLS also
in Fig. 2 which show the same trends for the performance ghesn't estimate the pattern properly. Also note that athee

the algorit_hms. Hence we conclude that the better p_erfocmaréstimates show activity in the alpha band (8-12 Hz) which is
of EMKS is due to the better model parameter estlmqtes.- expected for a motor-imagery experiment. Fig. 5(a) shows th
Next we compare the performance for spectrum estimatiqfiean of the spectrum for b trials of the right-hand data at
For this purpose we consider a frequency modulated sigpRsitionsC; andC,. We can see that for all the methods there
given by the following equation: is a significant decrease in activity in the alpha band-pater
_ . position C'5 after the cue is presented, while there is no such
yoo= 5sin2rfit) +u (29) pattern at positiorC;. Hence, on average, the estimates show
where f; is called the instantaneous frequency (IF) and ERD. Comparison within the methods shows the same trend as
is a zero mean Gaussian noise with Varianﬁe We choose the performance for asingle trial: EMKS estimates are simoot
a linearly frequency modulationf, = 10t. The signal is while KS and RLS are noisy. In addition EMKS and KS both
generated for 2 seconds, sampled at 128 Hz and the nciew better convergence than RLS. The poor convergence
variance is set to 1. As the simulated signal contains aeinginay affect the ERD estimates. This is because the reference
frequency component, we need 2 poles to model it. HoweJeével is obtained using initial estimates. For completenésgy
empirical evidence suggests that= 4 is more appropriate 5(b) shows the EMKS spectrum estimates for left-hand data.
for noisy data. Model parameters are obtained with the sarhée ERD patterns are reversed here, estimates for pogitjon
method used in the first simulation. Optimized values)of show ERD, while those for positio6’s do not. This clearly
and 2 are found to be 0.87 and 0.0006. IF estimates afg@monstrates the expected hemispherical asymmetry due to
obtained by picking the peaks of the spectrum obtained usititf motor-imagery experiment.
estimated TVAR coefficients. Fig. 3(a) shows the estimatesWe now discuss the results for ERD estimation. Fig. 6 shows
for a realization. It can be seen that EMKS shows smoothtrial of right-hand data at positiot’s, its spectrum, and
convergence, and least steady-state error. While perfaenaikRD estimates. ERD estimates are obtained with the follgwin
of RLS is quite poor, KS seems to track as well as EMKSettings: the frequency band for band-power is chosen to be
However, the average performance in Fig. 3(b) shows thatl5 Hz, reference power is obtained by averaging the band-
variance of the estimates with KS is larger than that of EMK$ower from 0 to 2 seconds, and ERD estimates are smoothed
In addition, both RLS and KS show oscillation in convergencever a window length of 16 samples. We observe that the
while EMKS shows a slightly over-damped response. Resuttserived ERD pattern is in accordance with the activity clesng
for a fast varying FM signal show similar trends [29]. in the spectrum. However, because of high variability betwe
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Fig. 4. The time-varying spectral estimates of an EEG sigmnad faght-hand 20 8
motor-imagery experiment at positiaris. 5
4
10

trials, it is difficult to draw any conclusion about the gealer
behavior of the ERD estimates from the single trial estimate o N
To prove the consistency of ERD estimate on average, we 0 2 4 6 8 0 2 4 6 8
compare it with the standard inter-trial variance (IV) nueth Time (sec) Time (sec)
[7]. Note that the IV method gives a good estimate of ERD, but
is sensitive to the selection of the frequency band. Withalis (b)
inspection, a frequency band for the IV method is chosefy. 5. The average spectrum for the right-hand motor-imag& data (a)
to be 9-12Hz. A dataset of0 trials is used for estimation. and the left-hand motor-imagery data (b). The cue is indicatéu a vertical
Referencing and smoothing are done with the same paramet8fg?t = 3 seconds.
used for EMKS. ERD estimates are shown in Fig. 7. We can
see that both of the estimates show similar patterns. Alsth, b
right- and left-hand data show desynchronization. Notettie function as follows:
frequency range chosen for EMKS is quite large (8-15 Hz),
and does not have to be chosen very precisely. This is due to D, = WtTdt — wp (31)
a better time-frequency resolution of spectrum estimatiés w
EMKS as compared to other methods.

Finally, we compare the classification accuracy obtain
using ERD estimates. We use a similar linear d|scr|m|nat|q
method as described in [5]. Training data consists of 14&stri

Frequency (Hz)

wherew, is the weight vector and) is the offset.D; > 0(<
means that signal is classified as a left-hand(right-hand)
al. w; and wp are found with a support-vector machine

(SVM) [31]. A Test data of size 140 trials is classified using
(70 each for right- and left-hand imagery) at positigisand the above discrimination function, and a ten-times ted-fol

Cj,. Four sets of model parameters are estimated with the EtM)ss validation is applied every 125 ms [5]. A time-coue
algorithm corresponding to left- and right-hand at posiio error ERR is then obtained. Fig. 8 shows the ER&noothed
Cs andCy. TVAR coef_ﬂments are obtained with these mOdel%ver a window of 16 samples. As expected before the event,
and a feature vector is formed as follows: the error rate is close to 50%, and it drops after the cue
[ X —xha is presented. The lowest classification accuracy obtaised i
d; = { to oyt ] (30)  15.4% at time point 4.6 seconds with EMKS, 19.6% at 4.6
seconds with KS and 20.8 at 6.1 seconds for RLS. We see
Herex!,,( orx} ) denotes the TVAR coefficients of the signathat EMKS gives the least error rate. Also note that the least
at positionC's using the right-hand (or left-hand)data modelerror is obtained at later time for RLS as compared to EMKS
Similar notations are used for the other variables. A distanand KS, which is because of the delay introduced by the RLS
D can be computed for a signal, using a linear discriminatiaigorithm.
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A 40+t Fig. 8. Time course of smoothed error rate ERRth EMKS, KS and RLS
& ool algorithms.
0 L
0 . interfaces.
Time (sec) Although the use of the EM algorithm is promising, there

are a few issues. The first one is related to convergence. We
found that convergence becomes very slow after a few cycles,
and training takes a lot of time. To obtain a value close to
the true model parameter, a large dataset is necessarkeFurt
100 : : work on increasing the rate of convergence could be useful.

Fig. 6. A motor-imagery trial (top) chosen from the right-hamdvement
experiment at positioil’s, along with the estimated spectrum and ERD.

o M‘ﬂ\w The second issue is about the validation of the above results
i 0 W The proposed approach shows very clear results for theatatas
considered. Although we do not expect a poor performance
-100 . . . .
100 on other datasets, validation with more datasets and rultip
ﬂm subjects will confirm our method’s applicability in a praet
g o PMJ WW brain-computer interface system.
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In this paper, we propose an EM algorithm based Kalman
smoother approach for ERD estimation. Previous approaches APPENDIX
impose severa_l constraints on the AR model to ma}<e .mo%.l EM algorithm: Log-likelihood derivation and M-step
parameter setting easier. We show that such constrairgs-det i - A )
orate estimation performance. The proposed method does nol0int probability distribution ofXy.7, Y1.7 can be written
require any constraints or manual setting. In additioninogit S
estimates in the maximum likelihood sense are obtained. An- T T
other advantage of the proposed approach is that the Kalma®(X1.z, Y1.7|0) = p(x1) [ [ p(xelxi—1) [ [ p(welx2, 1)
smoother can be used for coefficient estimation with these t=2 t=1 (32)
estimated model parameters. This further improves esitimatTaking log and expectation, we get the expectation of joint

performance compared to RLS based approaches. We sfigw iy ojingod with respect to the conditional expectatio
that the proposed approach significantly improves trackimdy

V. CONCLUSION

spectrum estimation performance. Application to real @worl Q = Exy[logp(X1.7,Y1.7(0O)] (33)
EEG data shows that the spectrum estimates are smooth and T 1 I
show good convergence. Useful ERD patterns are obtained = —=1Ino,? — [v,* — 2h,%yy; + h, Sy 7hy]

2 20,2

with the proposed method for ERD estimation. The advantage
is that the method does not require a careful selection of 1L

the frequency band, in contrast to previous approaches. In _iztrace[Q_l(St\T —ASi 147 — Sti—1rA
addition, this study confirms the hemispherical asymmetry t=2

obtained with ERD, and supports its use for brain-computer +ASt_1‘TA/)]

t=1

’
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For M-step, we take the derivative @ with respect to each

model parameter, and set it to zero to get the estimate, e
an update ford can be found as:

b0 ' . [21]
94A= 3 Z [* 2S¢ i-1r + 2ASt—llT] =0 (35)
t=2
which gives,
T T -1
Ak+1 = (Zst’t_l‘T> (Zst—l\T) (36)
t=2 t=2

Updates for other parameters can be obtained similarly.

(1]

[2

(3]
[4

5

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(25]

REFERENCES

G. Pfurtscheller and F. Lopes da Silva, “Event-relateBGEMEG
synchronization and desynchronization: basic principl&ectronen-

cephalography Clinical Neurophysiologywol. 110, pp. 1842-1857, [27]

1999.

G. Pfurtscheller and C. Neuper, “Event-related synofration of mu
rhythm in the EEG over the cortical hand area in madgurosci. Letf.
vol. 174, pp. 93-96, 1994.

——, “Motor imagery activates primary sensorimotor area inngha
Neurosci Lettvol. 239, pp. 65-68, 1997.

G. Pfurtscheller, C. Neuper, H. Ramoser, and J. Mullerki®g, “Vi-
sually guided motor imagery activates sensotimotor areas inahs,”
Neuroscience Lettersol. 269, pp. 153-156, 1999.

G. Pfurtscheller, C. Neuper, A. Schlogl, and K. LuggeBeparability
of EEG signals recorded during right and left motor imagernngsi
adaptive autoregressive parameteliSEE transactions on rehabilitation
engineering vol. 6, no. 3, September 1998.

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtstérelnd T. M.
Vaughana, “Brain-computer interfaces for communication aortrol,”
Clinical Neurophysiologyvol. 113, pp. 767791, 2002.

J. Kalcher and G. Pfurtscheller, “Discrimination betweghase-locked
and non-phase-locked event-related EEG activiBlgctroenceph clin
Neurophysigl vol. 94, pp. 381-483, 1995.

A. Schlogl, D. Flotzinger, and G. Pfurtscheller, “Adagt autoregressive
modeling used for single-trial EEG classificatiorBlomed. Technik
vol. 42, pp. 162-167, 1997.

H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, tioml spatial
filtering of simgle trial eeg during imagined hand movemehEEE
transactions on rehabilitation engineeringol. 8, no. 4, pp. 441-446,
2000.

B. Obermaier, C. Guger, C. Neuper, and G. Pfurtschelididden
Markov models for online classification of single trial EEGajaPattern
Recognition Lettersvol. 22, pp. 1299-1309, 2001.

G. Pfurtscheller, J. Kalcher, C. Neuper, D. Flotzingerd M. Pregenzer,
“On-line EEG classification during externally paced hand ements us-
ing a neural network-based classifidEJectronencephalography Clinical
Neurophysiologyvol. 99, pp. 416—425, 1996.

M. Arnold, W. H. R. Miltner, H. Witte, R. Bauer, and C. Bra, “Adap-
tive AR modeling of nonstationary time-series by means of Kalman
filtering,” IEEE Transactions on Biomedical Engineeringl. 45, no. 5,
pp. 553-562, may 1998.

M. J. Cassidy and W. D. Penny, “Bayesian nonstationatgragressive
models for biomedical signal analysi$ZEE transactions on biomedical
engineering vol. 49, no. 10, pp. 1142-1152, October 2002.

R. E. Kalman, “A new approach to linear filtering and prgiin
problems,"Trans. American Society of mechanical engineers, Series
Journal of Basic Engineeringvol. 82D, pp. 35-45, March 1960.

S. Haykin, Adaptive filter theory 4th ed. Pearson Education, Asia,
2002.

H. E. Rauch, “Soltutions to the linear smoothing problerEEE
Transactions on Automatic Controlol. 8, pp. 371-372, 1963.

H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likeldd estimates
of linear dynamic systemsJ. Amer. Inst. Aeronautics and Astronautics
vol. 3, no. 8, pp. 1445-1450, 1965.

(18]
(29]

(5b

(22]
(23]

(24]

(26]

(28]

(29]

(30]

(31]

M. Tarvainen, J. Hiltunen, P. Ranta-aho, and P. Kairj&la, “Estimation
of nonstationary EEG with kalman smoother approach: An aafidio to
event-related synchronization (ERSIEEE Transactions on Biomedical
Engineering vol. 51, no. 3, pp. 516-524, March 2004.

B. Sinopoli, L. Schenato, M. Franceschetti, K. PoolM, Jordan,
and S. Sastry, “Kalman filtering with intermittent observatig IEEE
Transactions on Automatic Contralol. 49, no. 9, pp. 1453-1464, 2004.
R. Shumway and D. Stoffefime Series Analysis and Its Applications
New York: Springer-Verlag, 2000.

T. Minka, “Expectation-maximization as lower bound maxation,”
Tutorial published on the web at http://www-white.media.edu/ tp-
minka/papers/em.html., Tech. Rep., 1998.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likebod
from incompleter data via EM algorithmJburnal of the royal statistical
society, series B (Methodologicalol. 39, pp. 1-38, 1977.

R. Shumway and D. Stoffer, “An approach to time series simogtand
forecasting using the em algorithml” Time Series Analvol. 3, no. 4,
pp. 253-264, 1982.

Z. Ghahramani and G. E. Hinton, “Parameter estimation foear
dynamical systems,” Univ. Toronto, Dept. Comput. Sci, Torordi,
Canada, Tech. Rep., 1996.

H. Raghavan, A. Tangirala, R. Gopaluni, and S. Shateritiication of
chemical processes with irregular output samplif@phtrol Engineering
Practice Jan 2005, accepted for publication.

T. Kailath, A. H. Sayed, and B. Hassillijnear Estimation Prentice
Hall, 2000.

S. Kung, “A new identification and model reduction algm via
singular value decomposition,” il2th Asilomar Conference on Circuits,
Systems and ComputeRacific Grove, CA, 1978.

G. Florian and G. Pfurtscheller, “Dynamic spectral gs@ of event-
related EEG data,Electroenceph clin Neurophysjolol. 95, pp. 393—
396, 1995.

M. E. Khan and D. N. Dutt, “Expectation-Maximization (BMlgorithm
for instantaneous frequency estimation with kalman smodthmeRro-
ceedings of the 12th European Signal Processing Confer&t8IPCQ
Vienna, Austria, 2004.

B. Blankertz, K. R. Mller, G. Curio, T. M. Vaughan, G. Sk,
J. R. Wolpaw, A. Schigl, C. Neuper, G. Pfurtscheller, T. ldiberger,
M. Schrder, and N. Birbaumer, “The BCI competition 2003: Pesgr
and perspectives in detection and discrimination of EEGIsitwals,”
IEEE Transactions on biomedical Engineerjmgl. 51, no. 6, june 2004.
R. O. Duda and P. E. HarRattern classification and scene analysis
New-york: Wiley-interscience Publication, 1973.

Mohammad Emtiyaz Khan received his MSc in
2004 from the Department of Electrical Commu-
nication Engineering at Indian Institute of Science,
Bangalore, India. He worked for two years in the
research and technology group at Honeywell Tech-
nology Solutions Lab, Bangalore, India. Currently he
is a PhD candidate in the Department of Computer
Science at the University of British Columbia, Van-
couver, Canada. His research interests are in the area
of statistical methods applied to machine-learning,
control, imaging and biomedical applications.

Deshpande Narayan Dutt received his PhD de-
gree in Electrical Communication Engineering from
the Indian Institute of Science, Bangalore, India.
Currently he is an associate professor at the same
institute. He had worked in the areas of acoustics
and speech signal processing. His research interests
are in the area of digital signal processing applied
to the analysis of biomedical signals, in particular
brain signals. He has published a large number of
papers in this area in leading international journals.



