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An Expectation-Maximization Algorithm Based
Kalman Smoother Approach for Event-Related

Desynchronization (ERD) Estimation from EEG
Mohammad Emtiyaz Khan, and Deshpande Narayan Dutt

Abstract— In this paper, we consider the problem of event-
related desynchronization (ERD) estimation. In existing ap-
proaches, model parameters are usually found manually through
experimentation, a tedious task that often leads to suboptimal
estimates. We propose an expectation-maximization (EM) al-
gorithm for model parameter estimation which is fully auto-
matic and gives optimal estimates. Further, we apply a Kalman
smoother to obtain ERD estimates. Results show that the EM
algorithm significantly improves the performance of the Kalman
smoother. Application of the proposed approach to the motor-
imagery EEG data shows that useful ERD patterns can be
obtained even without careful selection of frequency bands.

Index Terms— Event-related desynchronization, expectation-
maximization algorithm, Kalman smoother.

I. I NTRODUCTION

EVENT-RELATED desynchronization (ERD) and syn-
chronization (ERS) are used to describe the decrease and

increase in activity in the EEG signal, caused byphysical
events [1]. Experiments show that the preparation, planning
and even imagination of specific movements result in ERD in
mu and central-beta rhythms [2]–[4]. In addition ERD shows
significant differences in EEG activity between left- or right-
hand movements [5]. These differences can be used to build
communication channels known as brain-computer interfaces
(BCI) which have been very useful in providing assistance to
paralyzed patients [6].

ERD has been studied extensively by researchers and many
methods have been proposed for its estimation [7]–[11]. The
inter-trial variance (IV) method [7] is one of the first methods
proposed for quantification of ERD. In this method, ERD
estimates are obtained by computing an averaged inter-trial
variance of a band-pass filtered signal. Useful information
about ERD time courses and the hemispherical asymmetry
can be obtained with these estimates. However the IV method
cannot be used for on-line classification because it requires
averaging over multiple trials [5]. Another problem is that
it requires careful selection of frequency bands for ERD
estimation. To overcome these problems, a method based
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on the adaptive-autoregressive (AAR) model has been pro-
posed [8]. The AAR model is also called a time-varying AR
(TVAR) model, and has been applied extensively for EEG
signal analysis [12], [13]. The TVAR coefficients are usually
estimated with the recursive-least square (RLS) algorithmand
classified with a linear-discriminator. It is shown in [5] that
the TVAR coefficients capture the EEG patterns and improve
classification accuracy. However, in this method, values of
various parameters (e.g. model order, update coefficients)are
required, which are usually difficult to find.

The TVAR model can also be written as a state-space
model. The advantage of this formulation is that the optimal
estimates can be obtained using the Kalman filter [14]. The
Kalman filter is an optimal estimator in the mean-square sense
and other adaptive algorithms like the RLS algorithm can be
derived as a special case of the Kalman filter [15]. If the
future measurements are available, smoothing equations can
be used to further improve the estimation performance. The
Kalman filters along with the smoothing equations are usually
referred to as a Kalman smoother [16], [17]. The Kalman
smoother has been used for ERD estimation in [18], and an
improved tracking of ERD pattern is obtained. However in
this formulation as in the AAR model formulation, setting the
model parameters is a problem. To make it easier to set the
parameters, a very simple random-walk model is used.

We can see that in all the methods discussed above, finding
values of model parameters is a common issue. In this paper,
we propose an expectation-maximization (EM) algorithm for
model parameter estimation. We use the information present
in large training datasets to estimate model parameters. The
paper is organized as follows. In Section II, we describe the
state-space formulation of time-varying AR (TVAR) model. In
Section III, we describe our algorithm for ERD estimation. In
Section IV we discuss the results followed by a conclusion in
Section V

II. T IME-VARYING AUTOREGRESSIVE(TVAR) MODEL

We denote scalars/vectors/matrices by small/bold/capital
letters. Also we denote the transpose of a matrixA by A′.
We assume an EEG sequence to follow a TVAR model:

yt =

p∑

k=1

at
kyt−k + vt (1)
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Here {at
k}

p
k=1

are the TVAR coefficients1, p is the model
order andvt is the i.i.d. Gaussian noise with zero mean
and varianceσ2

v . We denote a sequence of measurements by
Y1:T ≡ {y1, . . . , yT }. We also assume TVAR coefficients to
follow a Gauss-Markov process:

xt+1 = Axt + wt (2)

wherext ≡ [at
1a

t
2 . . . at

p]
′ is the array of TVAR coefficients,

wt ∼ N (0, Q) is the i.i.d. noise,A is the transition matrix
and Q is a symmetric, positive definite matrix (both of size
p× p). These equations can be written as a single state-space
model:

Measurement Equation:yt = h
′

txt + vt

State Equation:xt+1 = Axt + wt

(3)

where ht ≡ [yt−1yt−2 . . . yt−p]
′ is the vector of the past

p measurements.xt is called the state of the system. The
initial state is assumed to be Gaussian:x0 ∼ N(µ0,Σ0). For
simplicity, the initial state vector and noises are assumedto be
independent of each other. All the model parameters together
are denoted byΘ ≡ {A, σ2

v , Q,µ0,Σ0}.
We now compare our model with two previous approaches

and show that they are special cases of our model. The
first approach is based on an AAR model [8] wherein RLS
algorithm is used to estimatext. It is shown in [15] that the
model used by the RLS algorithm is a special case of the state-
space model given by Eq. (3), and can be written as follows:

yt = h
′

txt + vt

xt+1 = λ−1/2
xt

(4)

whereλ is the forgetting factor for the RLS algorithm. Rewrit-
ing the AAR model as in Eq. (4) allows an easy comparison
with our model. There are two important differences. First,
there is no state noise in this model. Second, matrixA is
constrained to a scaled identity matrix which depends on the
choice ofλ. Note that the only tuning parameter in the AAR
model isλ.

The second approach, proposed in [18], uses a random-walk
model given by the following equation:

xt+1 = xt + wt (5)

Here again, there are two differences. First, the noise covari-
ance is constrained to a scaled identity matrix:Q = σ2

wI (σ2
w

is a non-negative real number). Second,A is assumed to be
an identity matrix. With these assumptions the only unknown
parameter isσ2

w. However setting this parameter is even more
difficult than λ as its range is not known (λ ∈ (0, 1)).

Both the AAR and the random-walk model impose con-
straints to reduce the number of tuning parameters. There are
at least two major consequences because of this. First, the
same model is assumed for all elements of the state vector.
Secondly, all the elements are assumed to be independent of
each other. These assumptions may deteriorate the estimation
performance (we will show this in Section IV-A). Another

1In literature, these are also called TVAR “parameters”, however to avoid
confusion with model parameters we will always use the term “coefficients”
for these, and reserve the term “parameters” for model parameters.

important point to note is that finding values of parameters is
difficult even when the number of parameters is small. This
is because it is usually done manually through trial-and-error.
Most of the time, manual settings give sub-optimal solutions
and an equally good automatic tuning is always preferred. Itis
a well-known fact that if anya priori knowledge is available,
then it should be used in formulation of the model [15]. We
propose the use of an EM algorithm which allows model
parameters to be estimated using training datasets. We describe
the proposed approach in next section.

III. EM A LGORITHM BASED APPROACH

We split ERD estimation into three sub-problems:

1) Estimation of the model parameterΘ.
2) Estimation of the TVAR coefficients{xt}.
3) Estimation of the ERD given TVAR coefficients.

We first present solution to (2), followed by (1) and (3).

A. Estimation of TVAR coefficients

Given the measurement sequenceY1:T , we want to find
estimates of the TVAR coefficients. For this purpose we
use the Kalman filter [14] which gives the optimal estimate
in the mean-square sense (in this section, we assume that
the model parameters are available). We use the following
definitions for the conditional expectations of the states and
the corresponding error covariances:

x̂t|s = E (xt|Y1:s)

Pt1,t2|s = E
(
(xt1 − x̂t1|s)(xt2 − x̂t2|s)

′

|Y1:s

) (6)

For convenience, whent1 = t2 = t, Pt1,t2|s is written asPt|s.
The state estimate(x̂t|t, Pt|t) can be obtained with the Kalman
filter, which is given as follows:

x̂t|t−1 = Ax̂t−1|t−1 (7)

Pt|t−1 = APt−1|t−1A
′ + Q (8)

Kt = Pt|t−1ht(h
′

tPt|t−1ht + σ2
v)−1 (9)

x̂t|t = x̂t|t−1 + Kt(yt − h
′

tx̂t|t−1) (10)

Pt|t = (I − Kth
′

t)Pt|t−1 (11)

with the initial conditionx1|0 = µ0 andP1|0 = Σ0. HereKt

is called the Kalman gain.
Note that the above Kalman filter is a time-varying filter as

ht depends on time. Hence the gain and the error covariance
will also vary with time and can not be computeda priori,
unlike the classical Kalman filter [14]. Hence it will require
more computation than the classical Kalman filter. However
the increase in computation will not be very large as we
are dealing with scalar measurements. Another important
difference is in the convergence of the filter. AsPt|t varies with
the measurement sequence, it doesn’t converge to a steady-
state value. To monitor convergence we need to compute the
expectation ofPt|t with Monte-Carlo simulations and check
if it settles down to a value (see [19] for an example of a
time-varying Kalman filter).
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If the future measurementsYt+1:T are available, then these
can be further used to improve the accuracy of the estimates.
The smoothedestimates [20] can be obtained as follows:

Jt = Pt|tA
′P−1

t+1|t (12)

x̂t|T = x̂t|t + Jt(x̂t+1|T − x̂t+1|t) (13)

Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′

t (14)

Note that it is the designer’s choice whether to use smoothing
equations or not. For example, during an on-line analysis, the
Kalman smoother will give estimates only after the end of the
experiment, which may not be acceptable. But for an off-line
analysis, getting the estimates after the experiment may not
matter.

B. Estimation of the model parameters with an EM algorithm

In this section, we describe the estimation of model pa-
rameters with an EM algorithm. The objective is to com-
pute an estimate ofΘ given a measurement sequence. For
Gaussian models, maximum likelihood (ML) estimate is an
obvious choice [20], which is given as follows:̂ΘML =
arg maxΘ log p(Y1:T |Θ), wherep(Y1:T |Θ) is the probability
density function of the measurements (also called likelihood).
Note that because of the dependence on the states, which are
not available, direct maximization is not possible. The problem
is to maximize the likelihood with respect to two unknowns:
states and model parameters. The expectation-maximization
(EM) algorithm takes an iterative approach by first maximizing
the likelihood with respect to the states in the E-step, and then
maximizing with respect to the parameters in the M-step. The
EM algorithm was first introduced in [22], and has been used
extensively for model parameter estimation [23]–[25]. TheE-
step maximum is given by the expected value of the complete
log-likelihood function as follows:

Q ≡ EX|Y [log p(Y1:T X1:T |Θ)] (15)

The M-step involves the direct differentiation ofQ to find
the values of the parameters. These computations are done
iteratively and convergence of the algorithm is guaranteed[22].

We now describe an EM algorithm for our model. For
derivation, we follow the procedure given in [24], and details
are given in Appendix A. A summary is given below:

1) E-step: This step involves the computation ofQ given
the measurementsY1:T and an estimate of the model parameter
from the previous iteration,̂Θk. As shown in Appendix A,Q
depends on the following three quantities:

x̂t|T ≡E(xt|Y1:T ) (16)

St|T ≡E(xtx
′
t|Y1:T ) = Pt|T + x̂t|T x̂

′
t|T (17)

St,t−1|T ≡E(xtx
′
t−1|Y1:T ) = Pt,t−1|T + x̂t|T x̂

′
t−1|T (18)

The first two quantities can be obtained using the Kalman
smoother as described in Section III-A. The last quantity can
be obtained as described in [20] with the following equation:

Pt,t−1|T = Jt−1Pt|T (19)

Q is then obtained using Eq. (34) given in Appendix A.

2) M-step: By direct differentiation ofQ, we get the
following expressions of the model parameter estimates:

Âk+1 =
( T∑

t=2

St,t−1|T

)( T∑

t=2

St−1|T

)−1

(20)

Q̂k+1 =
1

T − 1

( T∑

t=2

St|T − Âk+1

T∑

t=2

St−1,t|T

)
(21)

σ̂2
v

k+1

=
1

T

T∑

t=1

(y2
t − 2 h

′

tx̂t|T yt + h
′

tSt|T ht) (22)

µ̂
k+1
1 = x̂1|T (23)

Σ̂k+1
0 = S1 − x̂1|T x̂

′

1|T (24)

where k denotes the current iteration. We denote all these
estimates together aŝΘk+1.

Both E and M steps are iterated, and convergence is
monitored with the conditional likelihood function obtained
as follows:

log p(Y1:T |Θ̂
k) =

T∑

t=1

log
(
N (h

′

tx̂t|t−1,h
′
tPt|t−1ht + σ2

v)
)

(25)
The algorithm is said to have converged if the relative increase
in the likelihood at the current time step compared to the
previous time is below a certain threshold.

The above algorithm can be easily extended to multi-
ple measurements. Assuming trials to be i.i.d., the Kalman
smoother estimates need to be averaged over all measurement
sequences. Substitution in M-step equations will then give
the estimate of the parameters corresponding to the multiple
measurements.

There are a few practical issues which need to be addressed
when implementing the above algorithm. The first issue is of
numerical error. Because of its iterative nature, the algorithm
is susceptible to numerical round-off errors and can diverge.
To solve the numerical problem, we used a square-root filter
[26] implementation in this paper. The other issue concerns
initialization. Some methods are available for initialization
(e.g. subspace identification method in [25], [27]). In thispaper
we use a simpler method by assuming local stationarity. We
divide the dataset into overlapping windows, and for each of
these, we findxt andσ2

v using MATLAB’s ARYULE function.
From these local estimates, we find maximum likelihood
estimates ofQ. We setA to identity and the initial state mean
and covariance to zero and identity matrix respectively.

C. Estimation of ERD

In this section, we describe the estimation of ERD using
the TVAR coefficient estimates obtained with the Kalman
smoother. The approach is motivated by an earlier analysis
using an AR spectrum discussed in [28]. We use a similar
method, but with a time-varying AR spectrum. Given TVAR
coefficients, time-varying spectrum estimates can be obtained
as follows,

H(t, f) =
σ̂v

|1 −
∑p

i=1
âi

te
−2πif/fs |

(26)
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Here fs is the sampling frequency,̂ai
t is the ith element of

the estimated state-vector andf is the frequency in the range
[0, fs/2]. As ERD is seen only in specific frequency bands,
we average the spectrum to get band-powerPB :

PB(t) =

f2∑

f=f1

H(t, f)2 (27)

where (f1, f2) is the band of interest. The band can be set
through visual inspection or by using a threshold. We will
show later that a very precise selection of the frequency band
is not required, and that a rough setting serves the purpose.

An ERD estimate is then found by computing the relative
band-power with respect to a reference window. First, a
reference power is obtained by averaging band-power over a
time interval, where the ERD pattern is expected to be absent
(most probably at the start of the experiment). ERD is then
obtained with the following equation:

ERD(t) =
PB(t) − Pref

Pref
(28)

where Pref =
∑T2

t=T1
PB(t) is the reference band-power

for time T1 to T2. The ERD estimates obtained are further
smoothed by averaging over a time window. The above pro-
cedure is similar to the IV method [7] where ERD estimates
are obtained in the time domain by computing the variance of
a band-pass filtered EEG. The difference is that the IV method
does computation in the time domain, while our method is in
the frequency domain. For the IV method a careful selection
of the frequency band is required. We will show in Section
IV that our approach does not require such precision for the
frequency band.

IV. RESULTS

In this section, we study the effect of model parameter
estimation with the EM algorithm. We compare the proposed
approach with two previous approaches based on the RLS
algorithm and the Kalman smoother and discussed in [8]
and [18] respectively (see Section II for details of these
approaches). In the rest of the paper, we will refer to these
approaches as RLS and KS respectively, while we call our
approach EMKS.

A. Simulation Results

We compare the approaches for two criteria relevant to the
estimation of ERD: (i) tracking of the TVAR coefficients, and
(ii) spectrum estimation of a nonstationary signal. Note that
this evaluation requires time-varying simulation data. Togen-
erate a smoothly time-varying signal, we consider non-linear
models. This helps us to study the effect of approximating a
nonlinear signal, such as an EEG signal, with a TVAR model.
However a direct comparison of the model parameter estimates
is not possible for these cases as the actual model will be non-
linear. Hence we base our comparison on the performance of
a filter using the estimated model.

For the first criteria, we generate a smoothly varying AR(2)
process (see [18] for simulation details). The trace of the
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Fig. 1. (a) The root evolution and a typical realization of the AR(2) process
along with the optimization ofλ andσ2

w
(b) The TVAR coefficient estimates

with EMKS (thick black line), KS (thin black line) and RLS (thin gray line).
The actual TVAR coefficients are shown with a thick gray line.

simulated model root and a typical realization are shown
in Fig. 1(a). A signal is generated for 2 seconds, sampled
at 128 Hz and the noise variance is set to 0.2. The model
order is set top = 2, equal to the actual model order.
The model parameters are estimated with the EM algorithm
using a dataset of 100 sequences. The same dataset is used
to set parameters for RLS and KS.λ and σ2

w are optimized
for minimum mean-square error. The optimization results are
shown in Fig. 1(a), and the values obtained areλ = 0.898 and
σ2

w = 0.037. TVAR coefficients are then estimated with these
parameters.

Estimates for one realization are shown in Fig. 1(b). From
these figures, it is clear that EMKS gives the best performance.
Although RLS and KS track the first coefficient to some extent,
they do not track the second coefficient very well. This is
because the same model is assumed for both coefficients (see
Section II). The optimization function is biased towards the
first coefficient as its magnitude is higher, and the estimatefor
the second coefficient suffers. The model parameters estimated
with EM algorithm do not impose any such constraint on the
model, and both coefficients have different models. The means
and variances of the estimates for 100 realizations are shown
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in Fig. 2 which show the same trends for the performance of
the algorithms. Hence we conclude that the better performance
of EMKS is due to the better model parameter estimates.

Next we compare the performance for spectrum estimation.
For this purpose we consider a frequency modulated signal
given by the following equation:

yt = 5 sin(2πftt) + ut (29)

where ft is called the instantaneous frequency (IF) andut

is a zero mean Gaussian noise with varianceσ2
u. We choose

a linearly frequency modulation:ft = 10t. The signal is
generated for 2 seconds, sampled at 128 Hz and the noise
variance is set to 1. As the simulated signal contains a single
frequency component, we need 2 poles to model it. However
empirical evidence suggests thatp = 4 is more appropriate
for noisy data. Model parameters are obtained with the same
method used in the first simulation. Optimized values ofλ
and σ2

w are found to be 0.87 and 0.0006. IF estimates are
obtained by picking the peaks of the spectrum obtained using
estimated TVAR coefficients. Fig. 3(a) shows the estimates
for a realization. It can be seen that EMKS shows smooth
convergence, and least steady-state error. While performance
of RLS is quite poor, KS seems to track as well as EMKS.
However, the average performance in Fig. 3(b) shows that
variance of the estimates with KS is larger than that of EMKS.
In addition, both RLS and KS show oscillation in convergence,
while EMKS shows a slightly over-damped response. Results
for a fast varying FM signal show similar trends [29].

B. Motor-Imagery EEG Data

In this section, we apply our method to the motor-imagery
dataset provided by the Graz University of Technology. A
detailed description of the dataset can be found in [30]. In
the experiment, the subject’s task was to control a bar in one
dimension by imagining left- or right-hand movements. The
experiment included 7 runs with 40 trials each of 9 seconds
(hence 280 trials). Three bipolar EEG signals were measured
over positionsC3, Cz andC4. The first 2 seconds were quiet
and at t = 2 seconds, an acoustic stimulus indicated the
beginning of the trial. A cross (‘+’) was displayed for 1 second.
Then, att = 3 seconds, an arrow pointed either to the left or
right was displayed as a cue stimulus. The subject was asked
to imagine moving the bar in the direction of the cue. The
number of left-hand cues were equal to the number of right-
hand cues. For our analysis, we use model order ofp = 5, and
set λ = 0.97 and σ2

w = 0.001 for RLS and KS respectively.
These parameters are chosen to the best of our ability based
on visual inspection. For the EM algorithm, model parameters
are estimated with 50 trials. For single trial results, the chosen
dataset does not belong to the training dataset. However, for
average behavior the training dataset is included, becausethere
would be too little data otherwise.

Fig. 4 shows the time-varying spectrum estimates for the
first 5 seconds of a trial. This trial shows a decrease in activity
between 2 to 3 seconds and then after 4 seconds. We can
clearly see that the EMKS estimates capture these patterns
accurately. Although KS detects the decrease in activity, the
estimates have noisy peaks and are not smooth. RLS also
doesn’t estimate the pattern properly. Also note that all ofthese
estimates show activity in the alpha band (8-12 Hz) which is
expected for a motor-imagery experiment. Fig. 5(a) shows the
mean of the spectrum for all70 trials of the right-hand data at
positionsC3 andC4. We can see that for all the methods there
is a significant decrease in activity in the alpha band-powerat
positionC3 after the cue is presented, while there is no such
pattern at positionC4. Hence, on average, the estimates show
ERD. Comparison within the methods shows the same trend as
the performance for a single trial: EMKS estimates are smooth,
while KS and RLS are noisy. In addition EMKS and KS both
show better convergence than RLS. The poor convergence
may affect the ERD estimates. This is because the reference
level is obtained using initial estimates. For completeness, Fig
5(b) shows the EMKS spectrum estimates for left-hand data.
The ERD patterns are reversed here, estimates for positionC4

show ERD, while those for positionC3 do not. This clearly
demonstrates the expected hemispherical asymmetry due to
the motor-imagery experiment.

We now discuss the results for ERD estimation. Fig. 6 shows
a trial of right-hand data at positionC3, its spectrum, and
ERD estimates. ERD estimates are obtained with the following
settings: the frequency band for band-power is chosen to be
8-15 Hz, reference power is obtained by averaging the band-
power from 0 to 2 seconds, and ERD estimates are smoothed
over a window length of 16 samples. We observe that the
derived ERD pattern is in accordance with the activity changes
in the spectrum. However, because of high variability between
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trials, it is difficult to draw any conclusion about the general
behavior of the ERD estimates from the single trial estimates.
To prove the consistency of ERD estimate on average, we
compare it with the standard inter-trial variance (IV) method
[7]. Note that the IV method gives a good estimate of ERD, but
is sensitive to the selection of the frequency band. With visual
inspection, a frequency band for the IV method is chosen
to be 9-12Hz. A dataset of70 trials is used for estimation.
Referencing and smoothing are done with the same parameters
used for EMKS. ERD estimates are shown in Fig. 7. We can
see that both of the estimates show similar patterns. Also, both
right- and left-hand data show desynchronization. Note that the
frequency range chosen for EMKS is quite large (8-15 Hz),
and does not have to be chosen very precisely. This is due to
a better time-frequency resolution of spectrum estimates with
EMKS as compared to other methods.

Finally, we compare the classification accuracy obtained
using ERD estimates. We use a similar linear discrimination
method as described in [5]. Training data consists of 140 trials
(70 each for right- and left-hand imagery) at positionsC3 and
C4. Four sets of model parameters are estimated with the EM
algorithm corresponding to left- and right-hand at positions
C3 andC4. TVAR coefficients are obtained with these models,
and a feature vector is formed as follows:

dt =

[
x

t
R3 − x

t
L3

x
t
R4 − x

t
L4

]
(30)

Herex
t
R3( or xt

L3) denotes the TVAR coefficients of the signal
at positionC3 using the right-hand (or left-hand)data model.
Similar notations are used for the other variables. A distance
D can be computed for a signal, using a linear discrimination
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Fig. 5. The average spectrum for the right-hand motor-imageryEEG data (a)
and the left-hand motor-imagery data (b). The cue is indicatedwith a vertical
line at t = 3 seconds.

function as follows:

Dt = w
T
t dt − w0 (31)

wherewt is the weight vector andw0 is the offset.Dt > 0(<
0) means that signal is classified as a left-hand(right-hand)
trial. wt and w0 are found with a support-vector machine
(SVM) [31]. A Test data of size 140 trials is classified using
the above discrimination function, and a ten-times ten-fold
cross-validation is applied every 125 ms [5]. A time-courseof
error ERRt is then obtained. Fig. 8 shows the ERRt smoothed
over a window of 16 samples. As expected before the event,
the error rate is close to 50%, and it drops after the cue
is presented. The lowest classification accuracy obtained is
15.4% at time point 4.6 seconds with EMKS, 19.6% at 4.6
seconds with KS and 20.8 at 6.1 seconds for RLS. We see
that EMKS gives the least error rate. Also note that the least
error is obtained at later time for RLS as compared to EMKS
and KS, which is because of the delay introduced by the RLS
algorithm.
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V. CONCLUSION

In this paper, we propose an EM algorithm based Kalman
smoother approach for ERD estimation. Previous approaches
impose several constraints on the AR model to make model
parameter setting easier. We show that such constraints deteri-
orate estimation performance. The proposed method does not
require any constraints or manual setting. In addition, optimal
estimates in the maximum likelihood sense are obtained. An-
other advantage of the proposed approach is that the Kalman
smoother can be used for coefficient estimation with these
estimated model parameters. This further improves estimation
performance compared to RLS based approaches. We show
that the proposed approach significantly improves trackingand
spectrum estimation performance. Application to real world
EEG data shows that the spectrum estimates are smooth and
show good convergence. Useful ERD patterns are obtained
with the proposed method for ERD estimation. The advantage
is that the method does not require a careful selection of
the frequency band, in contrast to previous approaches. In
addition, this study confirms the hemispherical asymmetry
obtained with ERD, and supports its use for brain-computer
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Fig. 8. Time course of smoothed error rate ERRt with EMKS, KS and RLS
algorithms.

interfaces.
Although the use of the EM algorithm is promising, there

are a few issues. The first one is related to convergence. We
found that convergence becomes very slow after a few cycles,
and training takes a lot of time. To obtain a value close to
the true model parameter, a large dataset is necessary. Further
work on increasing the rate of convergence could be useful.
The second issue is about the validation of the above results.
The proposed approach shows very clear results for the dataset
considered. Although we do not expect a poor performance
on other datasets, validation with more datasets and multiple
subjects will confirm our method’s applicability in a practical
brain-computer interface system.
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APPENDIX

A. EM algorithm: Log-likelihood derivation and M-step

Joint probability distribution ofX1:T , Y1:T can be written
as:

p(X1:T , Y1:T |Θ) = p(x1)

T∏

t=2

p(xt|xt−1)

T∏

t=1

p(yt|xt,ht)

(32)
Taking log and expectation, we get the expectation of joint
log-likelihood with respect to the conditional expectation:

Q = EX|Y [log p(X1:T , Y1:T |Θ)] (33)

= −
T

2
lnσ 2

v −
1

2σ 2
v

T∑

t=1

[y 2
t − 2h

′

tx̂tyt + h
′

tSt|T ht]

−
1

2

T∑

t=2

trace[Q−1(St|T − ASt−1,t|T − St,t−1|T A
′

+ASt−1|T A
′

)]
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−
1

2
trace[V −1

1 (P1|T − 2π1x̂
′

1 + π1π
′

1 )] −
1

2
ln |V1|

−
T − 1

2
ln |Q| −

(p + 1)T

2
ln 2π (34)

For M-step, we take the derivative ofQ with respect to each
model parameter, and set it to zero to get the estimate, e.g.,
an update forA can be found as:

∂Q

∂A
= −

1

2

T∑

t=2

[
− 2St,t−1|T + 2ASt−1|T

]
= 0 (35)

which gives,

Ak+1 =
( T∑

t=2

St,t−1|T

)( T∑

t=2

St−1|T

)−1

(36)

Updates for other parameters can be obtained similarly.
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