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How to make Al that can
adapt quickly?



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too quick to adapt

TayTweets: Microsoft Al bot manipulated
into being extreme racist upon release

Posted Fri 25 Mar 2016 at 4:38am, updated Fri 25 Mar 2016 at 9:17am

TayTweets is programmed to converse like a teenage girl who has "zero chill’, according to Microsoft. (Twitter:

TayTweets)



Fail because too slow to adapt
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https://www.youtube.com/watch?v=Txobt WAFh80 7
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Adaptation in Machine Learning

* Even a small change may need retraining

* Huge amount of resources are required only
few can afford (costly & unsustainable) [1,2, 3]

Difficult to apply in “dynamic” settings (robotics,
medicine, epidemiology, climate science, etc.)

* QOur goal is to solve such challenges
* Also to reduce “magic” in deep learning

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Towards Quick Adaptation

* Unify, generalize and improve algorithms
— Bayesian Learning rule (BLR)

* Memory (or representation)
— Sensitivity and dual view of the BLR



Bayesian Learning Rule

Unify, generalize, and improve
learning algorithms
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See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

What are the common principles
behind popular algorithms?

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021 11



Bayesian learning rule

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

See Table 1 in
Khan and Rue, 2021

All sorts of
algorithms can be
derived by using two
sets of
approximations.

By relaxing the
approximations, we
get an improvement,
for example,
uncertainty aware
deep learning
optimizers

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017).



Uncertainty in Deep Learning

lteration 1
10
5_
o Pom
2 o pr
—5 n =
f" —— Adam
|l'_ —— BLR[1,2]
. ' ] I
-5 0 5
Input 1

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).



Practical Deep Learning with Bayes

How to estimate uncertainty with DL optimizers?

RMSprop (Improved) Bayesian Learning Rule [3]
g < VL(0) g <+ VL(9)

h<g-g hg-/s-e

s« (1 —p)s+ph s+ (1 —p)s+ ph+p°h?/(2s)

0 —60—ag/\s m«m-—ag/s

04— 1/1/s777 02 1/s, 0 < m +e~ N(0,1/s)
Costs are exactly the Perturb the gradients to get Hessian
same, but uncertainty Perturb according to the posterior
quality is much better!! Ensure s is always +ve

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020). 14



The Bayesian Learning Rule

in /(0 vs min K v(0) — H(g
T (©) qeQ q(H)[ (©)] EntSop)y

I
Posterior approximation (eg Gaussian)

Natural gradient descent (or equivalently mirror descent)

Natural and Expectation parameters of g
} |
A= A= pV, LB, [00)] — H(q) |

Exploiting posterior’s information geometry to derive
existing algorithms as special instances

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017). 15



Uncertainty of Deep Nets

VOGN: A modification of Adam with similar
performance on ImageNet, but better uncertainty
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Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Méllenhoffl, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl!, Mohammad Emtiyaz Khan1

1 Approximate Bayesian Inference Team 2 Computer Vision Group
RIKEN Center for Al Project, Tokyo, Japan Technical University of Munich, Germany

Dec 14th, 2021 — NeurlPS Workshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)s



Sharpness-Aware Minimization (SAM)
as an Optimal relaxation of Bayes

sAM:  sup £(0 + €)

lel<p

A

Our work:
Fenchel
Biconjugate

—

Bayes:

\ / / / E, 002 [0+ €)]

1. Moellenhoff and Khan, SAM as optimal relaxation of Bayes, ICLR 2023 (top 5%)
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SAM as a relaxation of Bayes

SAM (red star) upper bounds the Bayesian [Eq[f |

variance = 0.000
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Bayesian-SAM

An Adam-style algorithm, derived using the BLR, where
variances are automatically learned.

SAM with RMSprop SAM with BLR
g1 < VE(0) g1+ V(6)

e p g1 ,0_’

lg2 ] €T o

g VL6 + ¢) g VIO + ¢)

s (L=p)s+pg’ s (1—p)s+ pv/slg1]

0 0—a(vVs+d) g 0—0—a(s+7v) g

0 (s+v9)7H 0 m+éo

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022 ;1



Uncertainty Improves Performance

CIFAR-100 with ResNet-20 (270K params).

Accuracy AUROC
SGD 55.82(0.0m +8%  0.811(0.004)
SAM-SGD 5858(059) 0827(0003)
SWAG 56.53(0.401 0.814(0.00)
VOGN 59.83(0.75) 0.830(0.002)
Adam 39.73(0.97) +22% 0.775(0.004)
SAM-Adam 5325(080) +10% 0.818(0,005)

bSAM (ours) 62.64  33) 0.841 9.004)



Memory

What is relevant from the past?

23



How to represent and adapt the knowledge?
Perturbation, Sensitivity, and Duality

Bayes-Duality

24



Memory Maps using the BLR

Understand generic ML models and algorithms.

Regular examples Unpredictable  Uncertain
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Uncertainty
1. Tailor, Chang, Swaroop, Nalisnick, Solin, Khan, Memory maps to understand models (under review) 25



See Section 5.4 in Khan and Rue, 2021 for local parameterization

BLR Solutions & Thelr Duality
Zé A (1—-p) )\_ZPVM]EQ £:(0)]

1=0

Global natural parameter — \* — Z V *]E (6’)]

Local natural parameter > >\*

Local parameters are Lagrange Multipliers, measuring the
sensitivity of BLR solutions to local perturbation [1]. They
can be used to tell apart relevant vs irrelevant data.

The main contribution is that we can do this “during
training” for a wide-variety of ML algorithms and models.

26



Memory Perturbation

How sensitive is a model to its training data?
A= (1= p)A—pV, Eq[€(0))
Model-deviation (A) = predictability * Uncertainty

New model

O New data

1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA 1977
2. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation (under review) 27



A Tool for Data-Scientists

Understand the memory of a model.

28



Predict Generalization during Training

CIFAR10 on ResNet-20 using iVON [1]. Adam also works

1.8

NLL

0.6

1.21

but better uncertainty gives better estimates.

Leave-One-Out
Estimates on
training data

and during training

l

100 200 300
Epochs

1. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).



Summary

Through posterior approximations, the criteria to
categorize examples naturally emerges

— Generalizes existing concepts such as support
vectors, influence functions, inducing inputs etc

Applies to almost all ML problem
— Supervised, unsupervised, RL
— Discrete/continuous losses and parameters
No extra computation needed
A measure of generalization (model complexity)
The sensitivity of posterior leads to “Bayes Duality”

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation (under review)



Adaptation

Transfer knowledge without
forgetting the past

31



Example: Continual Learning

Standard

Deep

Learning

Continua

Learning: past classes never r

T\

Select a random
subset of images

ﬁ m
N

Update Deep
Network

evisited
Observe Update Observe Update
categories Deep categories Deep
Dog vs. Cat Netv:/ork > Lion vs. Tiger 5 Netvs./ork

Standard training leads to catastrophic forgetting.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the

national academy of sciences 114.13 (2017): 3521-3526.
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Continual Learning

Avoid forgetting by using “memorable examples” [1,2]

Task 2 0 Task 3
Qo o S
Class O:: %b %’0
.E O &
IJQ: X
myin )
(@)
(@)
DDD
Task 1
Class 1

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 33



Functional Regularization of
Memorable Past (FROMP) [4]

Standard way to is to add a weight-regularizer [1]
(0 — 0o1a) " Fora (0 — Oo1a)

A

I Weight uncertainty
We add functional regularizer [2]
0(£(0)) — o(fora)] ' K yqlo(£(0)) — o (fora)]

| I
Uncertainty Predictions

Why does this work?

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Back to the Memory Map

Highly sensitive examples are crucial for adaptation

Regular examples Unpredictable  Uncertain
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1. Tailor, Chang, Swaroop, Nalisnick, Solin, Khan, Memory maps to understand models (under review) 35



Knowledge-Adaptation Priors

Combine weight and function-space divergences

Weight-space Function-space
K(0) = 7Dy (0]|0c1a) + Dy (£(6)][£(0o1a))
} N
Candidate - r1 1 T r1 7
w W
N 2 2
~ w W 5
~ - 3 3
base model— w W
w | | fa.

No labels required,
so .4/ can include
any inputs!




How to Choose Memory?

Minimize the error in the gradients

Viga(0) — VK(0)
— Z Vi) |o(fi(0)) —o(fi(Ooa))]

1€D\M Prediction disagreement

Past and future should agree. There are some
general rules to ensure this, but no magic. In
general, we must understand sensitivity of the past

and future using natural gradients.

1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.



Towards Quick Adaptation

* Unify, generalize and improve algorithms
— Bayesian Learning rule (BLR)
* Memory (or representation)
— Sensitivity and dual view of the BLR
» Adaptation (or transfer)
— Continual learning and K-priors
— Use sensitivity to adapt quickly



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Emtiyaz Khan Julyan Arbel Kenichi Bannai
Research director Research director Co-PI (Japan side)
(Japan side) (France side)

Math-Science Team at
Approx-Bayes team at Statify-team, Inria RIKEN-AIP and Keio
RIKEN-AIP and OIST Grenoble Rhéne-Alpes University

Received total funding of around USD 3 million through JST’s

CREST-ANR and Kakenhi Grants.

Rio Yokota

Co-PI
(Japan side)

Tokyo Institute of
Technology
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Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/

Many thanks to our group
members and collaborators

Emtiyaz Khan Thomas Méllenhoff Geoffrey Wolfer Hugo Monzén

(many not on this slide).
Team Leader Research Scientist Special Postdoctoral Maldonado
Resesarcher Postdoctoral
Researcher

We have open positions
and are always looking for
new collaborations.

Keigo Nishida Gian Maria Marconi Lu Xu Peter Nickl

Postdoctoral Postdoctoral Postdoctoral Research Assistant
Researcher Researcher Researcher
RIKEN BDR

7 e
' e
Etash Guha Pierre Alquier Dharmesh Tailor
Intern Visiting Scientist Visiting Scientist Remote Collaborator
Georgia Tech University of ESSEC Business University of

Winsconsin-Madison School Amsterdam 40
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