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Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives
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Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o
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Yann LeCun

So many exciting new frontiers in ML, it's hard to give a short list,

particularly in new application areas (e.g. in the physical and biological
sciences).

But the Big Question is:
"How could machines learn as efficiently as humans and animals?"
This requires new paradigms.

Towards a new learning paradigm,
based on Bayesian principles
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Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

1. Parisi, German |., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)
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Deep Learning with Bayesian
Principles

Bayesian principles as a general principle

— To unify/generalize/improve learning-algorithms
— By computing “posterior approximations”
Bayesian Learning rule (BLR)

— Derive many existing algorithms
— Deep Learning (SGD, RMSprop, Adam)
— Design new algorithms for uncertainty in DL

Dual perspective of BLR for life-long learning
Impact: Everything with the same principle



The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for Al Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss 1 ¢ P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.



See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective
min £(6) vs min E ) [€(0)] — H(q) Entropy

0 qeQ
"~ Generalized-Posterior approx.
i ™ ™ Instead of the original
| | loss, optimize a different

(smoothed) one (a very
popular idea now for DL
theory [4]).

E(loss)

«« A common idea in
Inference, optimization,
= online learning,

“*  Reinforcement learning

Standard deviatixn

Standard Deviation

APt

Mean
1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)
2. Many other: Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006)
3. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)
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A 2-step Bayesian Scheme

Step 1: Choose an approximation (mix-exp-family)

Natural parameters Sufficient statistics  Expectation parameters
) - |

q(0) oc exp [N T(0)] p=E,[T(0)]

N(Om, S™) oc exp —;(H—m)TS(Q—m)]

x exp |(Sm)' 0+ Tr (—599T>]
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See Section 1.2 in Khan and Rue, 2021

A 2-step Bayesian Scheme

Step 1: Choose an approximation (mix-exp-family)

Natural parameters Sufficient statistics  Expectation parameters
} - |

a(6) o exp WT(@)} 1 = By [T(6)]

N(Om,S™) o exp ——(9 m) ' S(6 — ]

X exp SmTH—I—Tr< g )]

" Gaussian distribution q(0) :=N(0m,S™ )
Natural parameters A= {Sm, —S/2}
Expectation parameters p := {E,(0),E,(06")} )

.
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A 2-step Bayesian Scheme

Step 2: Use the Bayesian Learning Rule to optimize

A= A= oV, (Egl(0)] — H(q))

Natural gradient (NatGrad)
Optimality condition: vV, H(g:) =V ,E_[£(0)]
For minimal Exp-Family: -4 =V, E_[£(0)]

“Information matching” due to the entropy term

1. Natural gradients are essential, & contain higher-order
information about the loss, e.g., 1st and 2nd derivatives

2. This info is then assigned to appropriate natural params

By changing Q & approx. to natGrads, we can choose the
kind of “information” and recover many learning algorithms.
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Deriving Learning-Algorithms from
the Bayesian Learning Rule

Posterior Approximation «— Learning-Algorithm
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)
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Bayesian learning rule: X < X — oV, (E,[¢(0)] — H(q))

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) | Delta method, stochastic approx.,| 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN)| Gaussian (diagonal cov.) | Gauss-Newton Hessian approx. in| 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

We can compute
uncertainty using a
variant of Adam.

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Bayes leads to robust solutions

Avoiding large losses
Vv, H(g.) = V,E_[£(0)]

Region with L
large loss
q.(6)
4+— ® )
arge —ve
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Bayes leads to robust solutions

Avoiding large losses Avoiding sharp minima

‘ vV, H(g:) = V,E,_[£(0)]

Initialization

Region with L
large loss
g Sharp minima
q.(6)
44— ° )
Large —ve Zero Small +ve T m —
gradient gradient gradient 9*,1 * 9*.2 6 -



Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Iteration 1
70¢F
101
> 60}
5 o
iy
- § 50¢
2 S
0.
= S 40}
)
(v}
=51 3 2
;‘ —— Adam ‘>° 30
f. VOGN
s 0 : 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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See Section 4.2 in Khan and Rue, 2021

RMSprop/Adam from Bayes

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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RMSprop/Adam from Bayes

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

To get RMSprop, make the following choices
* Restrict covariance to be diagonal

* Replace Hessian by square of gradients

* Add square root for scaling vector

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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RMSprop/Adam from Bayes

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

To get RMSprop, make the following choices
* Restrict covariance to be diagonal

* Replace Hessian by square of gradients

* Add square root for scaling vector

For Adam, use a Heavy-ball term with KL
divergence as momentum (Appendix E in [1])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



Variational Online Gauss-Newton

RMSprop VOGN

g+ V(6) g+ V(0), where 6 ~ N (m,c?)

s (L=p)s+pg° s (1= p)s+ p(Xig))

0 0—a(/s+6) g m <+ m — as + ) Vel (6)
0% (s+7)7

rport torch
+imporl Lorchsso

Lrein_loader = Lorch.ulils.dala.Dalaloader{train_dalasel)

model = MLP()
oplimizer = torch.optim.Adamimodel.parameters())
tgptimizer = torchsso.optim. VOGN(model, dataset_size=len(train_loacder.datasel))

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Tuning VOGN

The trick is to mimic Adam’s trajectory
as closely as possible

Tuning VOGN: Currently, there is no common recipe for tuning the algerithmic hyperparameters
for VI, especially for large-scale tasks like ImageNet classification. Oneg key idea we use in our
experiments is to start with Adam hyperparameters and then make sure that VOGN training closely
[ollows an Adam-like trajectory in the beginning of raining. To achieve this, we divide the uning
into an optimisation part and a regularisation pari. In the optimisation part, we first tune the
hyperparameters of a deterministic version of VOGN, called the online Gauss-Newton (OGN}
method. 'This method, described in Appendix [ 1s more stable than VOGN since it does not require
MC sampling, and can be used as a stepping stone when moving from Adam/SGD to VOGN. After
reaching a competitve performance 1o Adam/SGD by OGN, we move 1o the regularisation part,
where we tune the prior precision 4, the tempering parameter 7, and the number of MC samples K for
YOGN. We initialise our scarch by setting the prior precision ¢ using the L2-regularisation parameter
used for OGN, as well as the dataset size N. Another technique is to warm-up the parameter 7
towards 7 = 1 (also sce the “momentum and initialisation” part). Setting 7 to smaller values usually
stabilises the training, and increasing it slowly &lso helps during tuning. We also add an externai
damping factor ~ > ( to the moving average s,. This increases the lower bound cf the eigenvalues of
the diagonal covariance %; and prevents the noise and the step size from becoming too large. We
find that a mix of these techniques works well for the problems we considered.

Sec 3, last paragraph in Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019). ;5
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Past and New Work

Natural Gradient Variational Inference

1.Khan and Lin. "Conjugate-computation variational inference:
Converting variational inference in non-conjugate models to
inferences in conjugate models.” Alstats (2017).

2.Khan and Nielsen. "Fast yet simple natural-gradient descent for
variational inference in complex models." (2018) ISITA.

Mixture of Exponential family

3.Lin et al. "Fast and Simple Natural-Gradient Variational Inference with
Mixture of Exponential-family Approximations,” ICML (2019).

Generalization of natural gradients

4.Lin et al. “Handling the Positive-Definite Constraint in the Bayesian
Learning Rule”, ICML (2020)

5.Lin et al. “Tractable structured natural gradient descent using local
parameterizations”, ICML, (2021)

Gaussian approx «— Newton-variants

Wu Lin (UBC)

Frank Nielsen (Sony)
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Gaussian Approximation and DL

1.Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in
Adam." ICML (2018).

2. Mishkin et al. “SLANG: Fast Structured Covariance Approximations for Bayesian Deep
Learning with Natural Gradient” NeurlPS (2018).

3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Extensions

* Binary Neural Networks (Bernoulli approx)

1.Meng, et al. "Training Binary Neural Networks using the Bayesian Learning
Rule." ICML (2020).

 (Gaussian Process

2.Chang et al. “Fast Variational Learning in State-Space GP Models”, MLSP (2020)
— For sparse GPs, BLR is a generalization of [1]

b o =«

Roman
Bachmann
(Intern from EPFL)

Xiangming
Meng
(RIKEN-AIP)

Paul Chang
(Aalto University)

1. Hensman et al. “Gaussian Process for Big Data”, UAI (2013)

W. J. Wilkinson
(Aalto University)
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Arno Solin
(Aalto University)
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Dual Perspective of the
Bayesian Learning Rule

Memorable Examples
Connections to Gaussian Process
Continual learning
Adaptation with K-priors
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Relevance of Data Examples

Which examples are most relevant for the
classifier? Red circle vs Blue circle.




Model view vs Data view

Bayes “automatically” defines data-relevance
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(By Roman Bachmann)
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Bayes Duality

» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].

Ze yuf@ xz))

— neural network

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 3
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» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].
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1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 3



Bayes Duality

» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].

Z€ vir fol2i)) > %[@z‘ — ¢i(z:) ' 0]

. A
=1  neural network =1 ?Z | |

“Dual” variables obtained from V ,E,[¢;(0)]
(For Gaussian approx, obtained from Jacobian, residual etc.)

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 3



Bayes Duality

» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].

Z€ vir o)) ~ Z %[@z‘ — () ' 0]

=1  neural network i=1 ?Z | |

“Dual” variables obtained from V ,E,[¢;(0)]
(For Gaussian approx, obtained from Jacobian, residual etc.)

. al.z define the “relevance” of the data examples. We call
more relevant ones the “memorable examples”.

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 3



Bayes Duality

» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].

Z€ vir o)) ~ Z %[@z‘ — () ' 0]

=1  neural network i=1 ?Z | |

“Dual” variables obtained from V ,E,[¢;(0)]
(For Gaussian approx, obtained from Jacobian, residual etc.)

. al.z define the “relevance” of the data examples. We call
more relevant ones the “memorable examples”.

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 3



Bayes Duality

» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].

Z€ vir fol2i)) > %[@z‘ — ¢i(z:) ' 0]

. A
=1  neural network =1 ?Z | |

“Dual” variables obtained from V ,E,[¢;(0)]
(For Gaussian approx, obtained from Jacobian, residual etc.)

. al.z define the “relevance” of the data examples. We call
more relevant ones the “memorable examples”.

* Natural-gradients give “dual variables” (Bayes Duality)

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 3
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Least Memorable

Most Memorable

33



Continual Learning with Bayes

[ g™ s "
: { ==
(&
L R e

PingBo Pan Siddharth Runa Eschenhagen .
(Intern from UT Swaroop (Intern from R1<;h Turner
Sydney) (University of University of (University of
yeaney Cambridge) Osnabruck) Cambridge)

Alexander Immer Ehsan Abedi
(Intern from EPFL) (Intern from EPFL)

Maciej Korzepa
(Intern from DTU)

1. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Standard
Deep
Learning

Continual Learning
/X

Update Deep

Select a random Network

subset of images
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Continual Learning
/X

Select a random Update Deep
i Network

2, subset of images

|

Standard
Deep
Learning

LR 3 )

W ||
“—_

Continual Learning: past classes never revisited

Observe Update Observe Update
categories Deep categories Deep
Network Network

---p| Dogvs.Cat | , IS Lion vs. Tiger > . —

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the
national academy of sciences 114.13 (2017): 3521-3526.
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Continual Learning: past classes never revisited

Observe Update Observe Update
categories Deep categories Deep
Network : : Network
---p| Dogvs.Cat |__, . > Lion vs. Tiger 5 , —

Standard training leads to catastrophic forgetting.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the
national academy of sciences 114.13 (2017): 3521-3526.
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Inaccuracy of Weight-Priors

M

~
“~

base model—

~
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‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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Inaccuracy of Weight-Priors

New data

1 ‘Add Data’ task.

Binary
classification with

base model—.~\ ~

W,\ y Logistic regression
it~ (Zero offset, ie,
‘Ff}f\ }"fr>_A .
o FuLiesy o decision boundary
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~ gin)
~ «_ [Fachtask N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.



Inaccuracy of Weight-Priors

base model—

batch training

New data Weight-prior (bad)
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‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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Inaccuracy of Weight-Priors

New data Weight-prior (bad)

‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

base model> ~

batch training

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.



Continual Learning in function space

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 37



Continual Learning in function space

Weights Regularization [1]
“ (0 = 1) "Ziaf0 = O,10)

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Weights Regularization [1]
(0 = 6,10) X0 = O,)

Functional Regularization of
memorable past (FROMP) [2]
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Weights Regularization [1]
(0 = 6,10) X0 = O,)

Functional Regularization of
memorable past (FROMP) [2]

KL(p@)||q0)) ~ KL(p(f)|1q(f))
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Continual Learning in function space

Weights Regularization [1]
(0 = 6,10) X0 = O,)

Functional Regularization of
memorable past (FROMP) [2]

KL(p@)||q0)) ~ KL(p(f)|1q(f))

' T
f (Xm) _fold(Xm) Kold(Xm’ Xm)_l f (Xm) _fold(Xm)

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 37



Continual Learning in function space

Weights Regularization [1]
(0 = 6,10) X0 = O,)

Functional Regularization of
memorable past (FROMP) [2]

KL(p@)||q0)) ~ KL(p(f)|1q(f))

' T
f (Xm) _fold(Xm) Kold(Xm’ Xm)_l f (Xm) _fold(Xm)

FROMP has the “right form” to reconstruct the
“gradient of the past” — it is a type of K-prior!

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 37



Knowledge-Adaptation Priors

Mahammad Emtiyaz Khan™ Siddharth Swaraop*
RIKEN Center for Al Project University of Cambridge
Tokyo, Japan Cambnidge, UK
emtiyaz.khan@riken. jp 522163QAcam.ac.uk
Ahstract

Humans and animals have a natural ability o guickly adapt (o their surroundings,
but machine-learning models, when subjected to changes, often require a complete
retraining from scratch. We present Knowledge-adaptation priors (K-priors) to
reduce the cost of retraining by enabling quick and accurate adaptation for a wide-
variety of tasks and models. This is made possible by a combination of weight and
function-space priors to reconstruct the gradients of the past, which recovers and
generalizes many existing, but seemingly-unrelated, adaptation strategies. Training
with simple first-order gradient methods can often recover the exact retrained model
to an arbitrary accuracy by choosing a sufficiently large memory of the past darta.
I'mpirical results confirm that the adaptation can be cheap and accurarte, and a
promising alternative to retraining.

Joint work with Siddharth Swaroop
University of Cambridge, UK

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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Knowledge-Adaptation Priors

K-priors use
past-memory
A (size M) in
addition to the
base model.

Weight-prior (bad)

base model— ~

batch training
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Knowledge-Adaptation Priors

K-priors use
past-memory
M (size M) in
addition to the
base model.

- Weight-prior (bad)

- _
pase model— ~ Doggy.  K-prior

batch training
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K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space

K(w) = 7Dy (wl|w,) + D (f(w)]|f(w-))



K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space
K(w) = 7Dy (wllwy) + Dy (f(w)||f(w.))
} N
Candidate - r1 1 T r1 7
w W
~, 2 2
~ w W
~ 3 3
pase model w W
w | | fa.
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K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space
K(w) = 7Dy (wllwy) + Dy (f(w)||f(w.))
} N
Candidate - r1 1 T r1 7
W W 4
~, 2 2
“~ w W
~ 3 3
pase model w W
w | | fa.
No labels required,
- so ./ can include

any inputs!
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Faithful Gradient Reconstruction

M=0 _ _ True grds (black)
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Faithful Gradient Reconstruction
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batch training
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Faithful Gradient Reconstruction

M=0 True grads (black) ve K-priar (red)

No labels required, so . can include any inputs!
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Results

K-priors need < 2% of past data to match “batch”.

Validation acc (%)

100

80

60

40

20

Add new data

s Batch
== Replay
={ = K-prior

2

5

10 20 50 100

Memory size (% of past data)

The results are on
USPS binary
classification with
Neural nets.

“Replay” uses the
same memory but
with true outputs.
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Test accuracy (%)

Model selection without test set

The “training marginal-likelihood” can be used to
select deep-nets, without requiring the test set.

70 | =4 10M ¢
o
)
60 | e
M £ Test-accuracy correlates
50 ’ 2 with train marg-lik.
@)
100K 5 _
40 | .Q 3 Both increase as the
) A ResNet = L
LY ® CNN S  model size is increased.
30 -l' 1 1 1 1 1OK
~3.1 —-26 -21 —-1.6 —1.1 On CIFAR-100, around
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Immer et al., Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning, /ICML, 2021.
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How to design Al that learn like us?

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q3: What do we need to know? (action & exploration)

* Posterior approximation is the key
— (Q1) Models == representation of the world

— (Q2) Posterior approximations == representation of the
model

— (Q3) Use posterior approximations for knowledge
representation, transfer, and collection.
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Approximate Bayesian Inference Team

https://team-approx-
bayes.github.io/
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