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Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives
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Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o
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Failure of Al in “dynamic” setting

Microsoft’s chatbot “Tay Tweets” went crazy
only after 24 hours of “learning”
from the other people’s tweets (2016)

Brighton E. Whytock (. brightonus 2
~ @TayandYou yes or no, is Ted Cruz the Zodiac Killer.

;‘ TquWeets ¥ 2+ Follow

D briahtonus33 sum ppl sav this... disaaree.
ted cruz would never have been satisfied with

destroying the lives of only 5 innocent people
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July 14, 2021

Yann LeCun

So many exciting new frontiers in ML, it's hard to give a short list,

particularly in new application areas (e.g. in the physical and biological
sciences).

But the Big Question is:
"How could machines learn as efficiently as humans and animals?"
This requires new paradigms.

Towards a new learning paradigm,
based on Bayesian principles



Human learning ;A Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

1. Parisi, German |., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)
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Deep Learning with Bayesian
Principles

Bayesian principles as a general principle

— To design/improve/generalize learning-algorithms

— By computing “posterior approximations”
Bayesian Learning rule

— Derive many existing algorithms

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and-ife-long-learning

Impact: Everything with one common principle.



The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for Al Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss t 1% P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.
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Bayesian Principles

1. Sample 0 ~ p(0) prior

2.Score  p(D|0) = H p(yilfo(z;))  Likelihood

3. Normalize A

Posterior Likelihood X Prior

p(D|0)p(0)
[ p(D|0)p(0)do

p(0|D) =

|
A global method: Integrates over all models
Does not scale to large problem

15



Input 2

10 1

Which is a good classifier?

Input 1

16



Which is a good classifier?

Misclassified by the red
/ line, but not by the blue
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Which is a good classifier?

Misclassified by the red
/ line, but not by the blue

What you don’t know
now, can hurt you later
“Uncertainty matters”

17



O o
600 8o p(0|Dq) =
e

Bayesian Principles

(1) Keep your options open

p(D1|0)p(0)
J p(D116)p(6)do
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Bayesian Principles

(1) Keep your options open

p(D110)p(0)
J p(D1]0)p(0)do

(2) Revise with new evidence

p(H\Dl) =

~ p(6|Ds, Dy) p(D2|0)p(0|D1)

[ p(D2|0)p(6]D1)db

18



Bayesian Principles

10 ®em, (1) Keep your options open
B
_ __p(Duff)p(9)
L 8o g p(0|D1) =
Y A J p(D1|0)p(0)do
/ (2) Revise with new evidence
6Dy, Dy) — p(D2|0)p(6|D1)
J p(D2|0)p(6|D1)do

18



Bayesian Principles

E g%@ﬁ (1) Keep your options open
_ __P(DulO)p(0)
L 8o 2 p(0|Dy) =
Y _Amd J p(D1|0)p(6)de
/ (2) Revise with new evidence
LB N p(D2|0)p(0|D1)

p(@‘DQ, Dl)

[ p(D2|0)p(6]D1)db

Similar ideas in sequential/online decision-making
(uncertainty/randomization). Computation is infeasible.

18



Image Segmentation

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Image Segmentation

Prediction

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Image Segmentation

Prediction

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Image Segmentation

Uncertainty

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Reduce Overfitting

Standard DL Bayesian DL

Left figure is cross-validation. Right figure is “Marginal Likelihood”.

Immer et al., Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning, ICML, 2021. 20



Test accuracy (%)

Model selection without test set

The “training marginal-likelihood” can be used to
select deep-nets, without requiring the test set.

70 | =4 10M ¢
o
)
60 | e
M £ Test-accuracy correlates
50 ’ 2 with train marg-lik.
@)
100K 5 _
40 | .Q 3 Both increase as the
) A ResNet = L
LY ® CNN S  model size is increased.
30 -l' 1 1 1 1 1OK
~3.1 —-26 -21 —-1.6 —1.1 On CIFAR-100, around

21
Immer et al., Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning, /ICML, 2021.



Bayesian learning Deep learning

Not scalable Scalable
p(DW)P(H) _
O D) = — 09— pH v
p(6D) [ p(D|0)p(0)de 06— pHy Vol(0)

Can handle large data and complex models?

Scalable training?
Can estimate uncertainty?

X
X
v
v

Can perform sequential / active /online /
incremental learning?

22



Bayesian Principles

Inference as Optimization
Go beyond probabilistic models
To deep-learning models

23



See Appendix A in Khan and Rue, 2021

Bayes Rule as Optimization

p(D|0)p(0)
| p(D|0)p(0)do

p(0|D) =



See Appendix A in Khan and Rue, 2021

Bayes Rule as Optimization

p(DI6)
p(0|D) = D“Hﬁ 90 [é —log p(D|0) ()]




See Appendix A in Khan and Rue, 2021

Bayes Rule as Optimization

p\e o)
oD £(6) := —log p(D]6 )
p(0|D) = DI dé’ 0)p(0)
= argmin Eq(e) [5(9)] H(q)
GP ] Entropy

All dlstrlbutlon Distribution
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Bayes Rule as Optimization

p\e o)
oD £(6) := —1log p(D] )
p(0|D) = (D) d@ 0)p(0)
= argmin Eq(e) [5(9)] H(q)
GP ] Entropy

All dlstrlbutlon Distribution
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Bayes Rule as Optimization

p\e (
01D 0(6) := —1log p(DI )
p(8|D) = (D0 d@ 9)p(0)

= arg min Eq(e) [5(9)] H(q)

EP ] Entropy
All dlstrlbutlon Distribution
~
q(6
=[E,[¢(0)] + E,[logq(0)] =E, {log e(ﬁ(g)}

—2(0)
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See Appendix A in Khan and Rue, 2021

Bayes Rule as Optimization

p(DI]0)p(H) (
POID) = D16\ p(6)ds (Pl)pE)
= argmin E ) [0(0)] — H(q)
9€P q| Entropy

All distribution Distribution

- ) ~

q

=[E,[¢(0)] + E,[logq(0)] =E, {log 65(9)}
= ¢.(0) < ="V  p(DIh)p(8) x p(6|D)

-

Holds for any loss function (generalized-posterior)

Zellner (1988), Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006) o



See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective
min £(6) vs min E ) [€(0)] — H(q) Entropy

€O ~ . -
0 1€Q Generalized-Posterior
approximation

1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)

25



See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective

min £(6) vs min E ) [€(0)] — H(q) Entropy
/ AN Generalized-Posterior

Standarg deviationU : approxi mation
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1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)
2. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)
3. Khan et al. "Variational adaptive-Newton method for explorative learning." arXiv (2017). 26
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See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective

min £(6) vs min E ) [€(0)] — H(q) Entropy
/ AN Generalized-Posterior

Standarg deviation: 0.00 approximation
@
ke!
m
Common in
c .. Search
2 .« * Inference
g == e (Global) optimization
o | _ = Online learning
S ... * Reinforcement
(O] .
& learning

Mean

1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)
2. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)
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See Section 1.2 in Khan and Rue, 2021

Exponential Family Approximations

Natural Sufficient
parameters Statistics

v

1(0) < exp [ATT(0)]
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Exponential Family Approximations

Natural Sufficient
parameters Statistics

v

1(0) < exp [ATT(0)]

N(Om, S™) oc exp _—%(9 —m)' S0 — m)]

x exp |(Sm)' 0+ Tr (—599T>]



See Section 1.2 in Khan and Rue, 2021

Exponential Family Approximations

Natural Sufficient Expectation
parameters Statistics parameters
| |
a(6) o exp [ATT(6)] = Eg[T(6)]

N(Om, S™) oc exp _—%(9 —m)' S0 — m)]

x exp |(Sm)' 0+ Tr (—599T>]
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See Section 1.2 in Khan and Rue, 2021

Exponential Family Approximations

Natural Sufficient Expectation
parameters Statistics parameters
| |
a(6) o exp [ATT(6)] = Eg[T(6)]

N(Om, S™) oc exp _—%(9 —m)' S0 — m)]

x exp |(Sm)' 0+ Tr (—599T>]

" Gaussian distribution q(0) := N (0m,571)
Natural parameters A= {Sm,—-5/2}
Expectation parameters 1 := {E,(0),E,(06")} )

.

27



See Eq. 5 and the discussion afterward, in Khan and Rue, 2021

Solutions of Bayes Objective

Natural gradient

A fundamental equation V,H(g:) =V E_[£(0)]
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See Eq. 5 and the discussion afterward, in Khan and Rue, 2021

Solutions of Bayes Objective

Natural gradient

A fundamental equation Vv H(gq.) = V E_[£(0)]
For minimal Exp-Family -4 =V E_[£(0)]

Information matching due to the entropy term

1. Natural gradients contain essential higher-order
information about the loss landscape

2. These are assigned to appropriate natural params



See Eq. 5 and the discussion afterward, in Khan and Rue, 2021

Solutions of Bayes Objective

Natural gradient

A fundamental equation Vv H(gq.) = V E_[£(0)]
For minimal Exp-Family -4 =V E_[£(0)]

Information matching due to the entropy term

1. Natural gradients contain essential higher-order
information about the loss landscape

2. These are assigned to appropriate natural params

The importance of this equation is “entirely missed in
the Bayesian machine-learning community, including
books, reviews, and tutorial on this topic”



Based on Sec 1.3.3 in Khan and Rue, 2021

A simple example



vV, H(g.) = V,E,[£(6)]

Bayesian Learning Rule

Unify, generalize, and improve
machine-learning algorithms

30



See Section 1.2 and 2 in Khan and Rue, 2021

Bayesian Learning Rule

min £(6) vs min E ) [(0)] — H(q)
Exponential-family Approx.

Deep Learning algo: § « 6 — pH, "V £(6)

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017). 31



See Section 1.2 and 2 in Khan and Rue, 2021

Bayesian Learning Rule

min £(6) vs min E ) [(0)] — H(q)
Exponential-family Approx.

Deep Learning algo: § « 6 — pH, "V £(6)
Bayes learning rule: A <~ A — pV, (E,[£(0)] — H(q))

| 1 ™~ Natural Gradient

Natural and Expectation parameters of an
exponential family distribution g
(natural-gradient descent & mirror descent)

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).
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Bayesian Learning Rule

min £(6) vs min E ) [(0)] — H(q)
Exponential-family Approx.

Deep Learning algo: § « 6 — pH, "V £(6)
Bayes learning rule: A <~ A — pV, (E,[£(0)] — H(q))

| I ™~ Natural Gradient

Natural and Expectation parameters of an
exponential family distribution g
(natural-gradient descent & mirror descent)

By changing Q, we can recover DL algorithms (and more)

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



See Section 1.3 and 3.2 in Khan and Rue, 2021
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Complex < >  Simple
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Deriving Learning-Algorithms from
the Bayesian Learning Rule

Posterior Approximation «— Learning-Algorithm

Complex < >  Simple
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Deriving Learning-Algorithms from
the Bayesian Learning Rule

Posterior Approximation «— Learning-Algorithm

Complex < >  Simple
_ Gradient
Bayes’ rule Mixture Newton  pascent

of Newton
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m

_Entropy H(q) := log(2m)/2

J
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

A= A= pV . (Eql6(0)] — H(q))
Derived by choosing Gaussian with fixed covariance
" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m
_Entropy H(q) := log(2m)/2

J
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

m < m — pV.,,, E,[£(0)]

A= A= pV . (Eql6(0)] — H(q))
Derived by choosing Gaussian with fixed covariance
" Gaussian distribution ¢(9) := A/ (m, 1)
Natural parameters Ai=m

Expectation parameters 1 := E,[0] = m
_Entropy H(q) := log(2) /2

J




See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

“Global” to “local” | -
(the delta method) | 0 T PV g [£(0))

O]~ m) | A A= pV,, (E4[6(0)] — H(q))
Derived by choosing Gaussian with fixed covariance
" Gaussian distribution ¢(9) := A/ (m, 1)
Natural parameters Ai=m
Expectation parameters p = E4[|0] = m
_Entropy H(q) := log(2m)/2

J




See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

Bayes Learn Rule: m < m — pV,,£(m)

“Global” to “local” | -
(the delta method) | 0 T PV g [£(0))

B O] = m) | A= A= pV,, (Eql€(0)] — H(q))

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(9) := A/ (m, 1)
Natural parameters Ai=m

Expectation parameters 1 := E,[0] = m
_Entropy H(q) := log(2) /2

J
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Bayesian learning rule: X < X — oV, (E,[¢(0)] — H(q))

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) | Delta method, stochastic approx.,| 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN)| Gaussian (diagonal cov.) | Gauss-Newton Hessian approx. in| 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

We can compute
uncertainty using a
variant of Adam.

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes

Newton’s method: 0 < 6 — H, " [Val(0)]

Derived by choosing a multivariate Gaussian

" Gaussian distribution ¢(6) := N (6]m, S~}
Natural parameters A= {Sm,—S5/2}

N

_ Expectation parameters = {Eq(0),Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

35



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= A= pV, (Eq[£(0)] — H(g))

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= A= pV,, (Eqll(0)] — H(g)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= A= p(VLEq[6(0)] + A) [_V,UH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

)
Sm ¢ (1 p)Sm — pVe, (0)E,[£(0)

\

A (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} y

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

)
Sm ¢ (1 p)Sm — pVe, (0)E,[£(0)

1 1
_55 < —(1 — ,0)55 + ,OVEQ(HHT)EQV(Q)]

\

A (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

-
S (1— p)Sm — pVs, 0 Eqll(0)
S (1 — IO)S — pQVEq(QQT)Eq[é(G’)]

\

A (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} y

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 35
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Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

[Sm — (1 —=p)Sm — pVi,_(6)Eq€(0)] J
S < (1 —p)S — p2Vg 997 Eq[€(0)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

Express in terms of gradient and Hessian of loss:
Ve, 0)Eq[(0)] = Eg[Vol(0)] — 2B, [Holm

Vi, 007)Eq[€(0)] = Eq|Ho

Sm (1= p)Sm — pVe, (o) E[€(0)]
S (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

Delta Method
Eq|0(0)] =~ £(m)

Express in terms of gradient and Hessian of loss:
Ve, 0)Eq[(0)] = Eg[Vol(0)] — 2B, [Holm

Vi, 007)Eq€(0)] = Eq[Ho]

Sm (1= p)Sm — pVe, (o) E[€(0)]
S (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

(" N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)

36



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]
s N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)
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See Section 4.4 in Khan and Rue, 2021

Bayes leads to robust solutions

Avoiding large losses

Region with L
large loss
q.(6)
4+— ® )
arge —ve



See Section 4.4 in Khan and Rue, 2021

Bayes leads to robust solutions

Avoiding large losses Avoiding sharp minima

1

Region with L
large loss
/ \ 7+(6)
4+— L )
arge —ve Z Small +ve




(Some) Bayesian Deep Learning
Methods

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).
3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).

4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).

5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).
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(Some) Bayesian Deep Learning
Methods

* SGD based (MC-dropout [1], SWAG [2],
Laplace [3])
— Pros: Scales well to large problems
— Cons: Not flexible

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).
3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).

4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).

5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).
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(Some) Bayesian Deep Learning
Methods

* SGD based (MC-dropout [1], SWAG [2],
Laplace [3])
— Pros: Scales well to large problems
— Cons: Not flexible
* Variational inference methods [4,5]
A= A= pVa (Eql€(8)] — H(q))
— Pros: Enable flexible distributions
— Cons: Do not scale to large problems (ImageNet)

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).

3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).
4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).
5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).
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Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Iteration 1
70¢F
101
> 60}
5 o
iy
- § 50¢
2 S
0.
= S 40}
)
(v}
=51 3 2
;‘ —— Adam ‘>° 30
f. VOGN
s 0 : 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Iteration 1
70¢F
101
> 60}
5 o
iy
- § 50¢
2 S
0.
= S 40}
)
(v}
=51 3 2
;‘ —— Adam ‘>° 30
f. VOGN
s 0 : 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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See Section 4.2 in Khan and Rue, 2021

RMSprop/Adam from Bayes

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



See Section 4.2 in Khan and Rue, 2021

RMSprop/Adam from Bayes

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

To get RMSprop, make the following choices
* Restrict covariance to be diagonal

* Replace Hessian by square of gradients

* Add square root for scaling vector

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



See Section 4.2 in Khan and Rue, 2021

RMSprop/Adam from Bayes

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

To get RMSprop, make the following choices
* Restrict covariance to be diagonal

* Replace Hessian by square of gradients

* Add square root for scaling vector

For Adam, use a Heavy-ball term with KL
divergence as momentum (Appendix E in [1])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



Variational Online Gauss-Newton

RMSprop VOGN

g+ V(6) g+ V(0), where 6 ~ N (m,c?)

s (L=p)s+pg° s (1= p)s+ p(Xig))

0 0—a(/s+6) g m <+ m — as + ) Vel (6)
0% (s+7)7

rport torch
+imporl Lorchsso

Lrein_loader = Lorch.ulils.dala.Dalaloader{train_dalasel)

model = MLP()
oplimizer = torch.optim.Adamimodel.parameters())
tgptimizer = torchsso.optim. VOGN(model, dataset_size=len(train_loacder.datasel))

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Out-of-Distributions Test

Our method (in red) is confident on “in-distribution” data, and not
overconfident on “out-of-distribution” data.

In-Distribution (CIFAR-10)

5

Adam
—— MC-Dropout
4 — Qurs

0 1 2
Predictive Entropy



Out-of-Distributions Test

Our method (in red) is confident on “in-distribution” data, and not
overconfident on “out-of-distribution” data.

In-Distribution (CIFAR-10) Out-of-Distribution (SVHN)
5 2.V T
Adam FPR:0.88 AUC:0.80 \
—— MC-Dropout — FPR:0.82 AUC:0.80
4 —— Qurs - — FPR:0.88 AUC:0.70
3
1.0
2
0.5
1
° o 1 2 00 0 1 2

Predictive Entropy Predictive Entropy
43



Tuning VOGN

The trick is to mimic Adam’s trajectory
as closely as possible

Tuning VOGN: Currently, there is no common recipe for tuning the algerithmic hyperparameters
for VI, especially for large-scale tasks like ImageNet classification. Oneg key idea we use in our
experiments is to start with Adam hyperparameters and then make sure that VOGN training closely
[ollows an Adam-like trajectory in the beginning of raining. To achieve this, we divide the uning
into an optimisation part and a regularisation pari. In the optimisation part, we first tune the
hyperparameters of a deterministic version of VOGN, called the online Gauss-Newton (OGN}
method. 'This method, described in Appendix [ 1s more stable than VOGN since it does not require
MC sampling, and can be used as a stepping stone when moving from Adam/SGD to VOGN. After
reaching a competitve performance 1o Adam/SGD by OGN, we move 1o the regularisation part,
where we tune the prior precision 4, the tempering parameter 7, and the number of MC samples K for
YOGN. We initialise our scarch by setting the prior precision ¢ using the L2-regularisation parameter
used for OGN, as well as the dataset size N. Another technique is to warm-up the parameter 7
towards 7 = 1 (also sce the “momentum and initialisation” part). Setting 7 to smaller values usually
stabilises the training, and increasing it slowly &lso helps during tuning. We also add an externai
damping factor ~ > ( to the moving average s,. This increases the lower bound cf the eigenvalues of
the diagonal covariance %; and prevents the noise and the step size from becoming too large. We
find that a mix of these techniques works well for the problems we considered.

Sec 3, last paragraph in Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019). 4,4
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Past and New Work

Natural Gradient Variational Inference

1.Khan and Lin. "Conjugate-computation variational inference:
Converting variational inference in non-conjugate models to
inferences in conjugate models.” Alstats (2017).

2.Khan and Nielsen. "Fast yet simple natural-gradient descent for
variational inference in complex models." (2018) ISITA.

Mixture of Exponential family

3.Lin et al. "Fast and Simple Natural-Gradient Variational Inference with
Mixture of Exponential-family Approximations,” ICML (2019).

Generalization of natural gradients

4.Lin et al. “Handling the Positive-Definite Constraint in the Bayesian
Learning Rule”, ICML (2020)

5. Lin et al. “Tractable structured natural gradient descent using local
parameterizations”, ICML, (2021)

Gaussian approx <=> Newton-variants

Wu Lin (UBC)

Frank Nielsen (Sony)

46



Gaussian Approximation and DL

1.Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in
Adam." ICML (2018).

2. Mishkin et al. “SLANG: Fast Structured Covariance Approximations for Bayesian Deep
Learning with Natural Gradient” NeurlPS (2018).

3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Extensions

* Binary Neural Networks (Bernoulli approx)

1.Meng, et al. "Training Binary Neural Networks using the Bayesian Learning
Rule." ICML (2020).

 (Gaussian Process

2.Chang et al. “Fast Variational Learning in State-Space GP Models”, MLSP (2020)
— For sparse GPs, BLR is a generalization of [1]
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How to design Al that learn like us?

* Uncertainty -> Learning -> Knowledge

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q83: What do we need to know? (action & exploration)

* Posterior approximation is the key
— (Q1) Models == representation of the world
— (Q2) Posterior approximations == representation of the model

— (Q3) Use posterior approximations for knowledge
representation, transfer, and collection.
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Bayes with Approximate Posterior

argmin E, ) [£(0)] — H(q)
q€r qf( ) Entropy

All distribution Distribution

Restrict the set of distribution from P to Q

o B
arg min 20 1€(0)] — H(q)

This is known as Variational Inference, but along
with the Bayesian learning rule, it enables us to
derive many more algorithms (including Bayes’
rule). So this is not just a method, but a principle.
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Conjugate Bayesian Inference from
Bayesian Principles

The following algorithms can be obtained by
setting M. = \p
» Forward-backward algorithm [2]
— Kalman filters, HMM etc.
» Stochastic Variational Inference [3]

* Variational message passing [4]

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).

2. Binder et al.. Space-Efficient Inference in Dynamic Probabilistic Networks. IJCAI (1997).

3. Hoffman et al. Stochastic variational inference. JMLR (2013)

4. Winn and Bishop. "Variational message passing." JMLR (2005) y
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Laplace Approximation

Derived by choosing a multivariate Gaussian, then
running the following Newton’s update

‘m < m — pS_lvmé(my

\S A (1 — ,O)S T PHm<—)— Hessian at m

Bayesian principles we discussed are general
principles to derive learning algorithms

Calling them variational inference limits their scope!
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More References for Posterior

Approximations
Evolution strategy *'®geo Eq(o) 1€(9)]

1.Ingo Rechenberg, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution (PhD thesis) 1971.

Gaussian Homotopy

2. Mobahi, Hossein, and John W. Fisher lll. "A theoretical analysis of optimization by
Gaussian continuation." Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

Smoothing-based Optimization

3. Leordeanu, Marius, and Martial Hebert. "Smoothing-based optimization." 2008 IEEE
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Graduated Optimization
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Stochastic Search
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Black-Box VI & Bayesian Learning rule

Bayes learning rule: A <~ A — pV , (E,[£(0)] — H(q))
Black-Box VI[1]: A< XA — pV, (E,[¢(0)] — H(q))

Black-box VI is more generally applicable (beyond
exponential-family), but we cannot derive learning-
algorithms from it (even for conjugate Bayesian
models)

1. Ranganath, Rajesh, Sean Gerrish, and David Blei. "Black box variational inference." Artificial Intelligence
and Statistics. 2014.
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Bayes learning rule: A < X\ — pV , (E,[¢(0)] — H(q))
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Also equivalent to a mirror-descent algorithm.The
Geometry of the mirror-descent is defined by the
log partition function of the posterior approximation.
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