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The Goal of My Research

“Jo understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Human Learning:

At the age of 6
months, learning by
actively and
sequentially
collecting limited and
correlated data.




Converged

at the age
of

12 months




Transfer
Knowledge

at the age
of 14
months




Human learning £ Deep learning

Humans can learn from Machines require large
limited, sequential, amount of 1ID data, and
correlated data, with a don’t really understand
clear understanding of the world and cannot
the world. reason about it.

My current research focuses on reducing this gap!



Learning-Algorithms from
Bayesian Principles

Practical Bayesian principles
— To design/improve/generalize learning-algorithms.
— By computing “posterior” distribution over unknowns.
Generalization of many existing algorithms,
— Classical (least-squares, Newton, HMM, Kalman.. etc).
— Deep Learning (SGD, RMSprop, Adam).
Helps us design new algorithms
— Connection to Gaussian Processes.
— Reinforcement, online, continual learning, reasoning..

Impact: Everything with one common principle.



Learn i ng by BayeSian Principles

Learning by optimization: 0 < 0 — pH V()

Learning by Bayes: A < (1 — p)A — pV, E, [¢(6)]
| e

Natural and Expectation parameters of g
e.g., Gaussian distribution

Natural parameters {V " 'm,V !} q(0) .= N(0m,V)

Expectation/moment/ (E(0), B(007T )} exp |mTV—10 — Lomy-1p
mean parameters 2



Learning by Bayes
Learning by optimization: 0 < 0 — pH 'V4(6)
Learning by Bayes: A < (1 — p)A — pV E, [£(0)]

Natural and Expectation parameters of q

Alstats 2017 | — Classical algorithms:|_Least-squares, Newton’s method, Kalman
- filters, Baum-Welch, Forward-backward, etc.

— Bayesian inference: EM, Laplace’s method, SVI, VMP.
ICML 2018 — | Deep learning: SGD, RMSprop, Adam.

NeurlPS 20184 — Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

— Listincomplete...
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Neural Network

(X' X+~ 11X Ty
(N likelihood prior —
[mem—p(S—l—WI) g]

K, Zf(yz‘, fo(zi)) +~0"0

, S+ (1—p)S+pH 1
\ =1 neural network y M
Hessian Gradient
RMSprop Bayes with diagonal Gaussian
0« u 0 < p+e, where e ~ N (0, Ns+ \)
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Learning by Bayes

* Learning by Bayes works for
— (Minimal) ExpFam (Alstats 2017).
— Some mixtures of ExtFam (see ICML 2019).
— Kernel exponential family (Upcoming).

* The principle is to choose an appropriate

sufficient statistics, which then yields an
approximation of the loss.

((0) ~a' $(0)

A (1= p)A—pV, E, [£(0)] — V., [0(8)



Uncertainty for Logistic-Regression

Iteration 1

— Adam
— QUI method
(mean)

Our method
(samples)

M =5,
Rho =0.01,
Gamma = 0.01
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Input 2

Uncertainty for Deep Learning

ICML 2018
Epoch 0O
— Adam
’ o Ours
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i

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)is



NeurlPS 2019
Practical DL with Bayes (on ImageNet)

State-of-the-art performance and convergence rate, while preserving
benefits of Bayesian principles (“well-calibrated” uncertainty).
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Out-of-Distributions Test

Our method (in red) is confident on “in-distribution” data, and not
overconfident on “out-of-distribution” data.

In-Distribution (CIFAR-10) Out-of-Distribution (SVHN)
5 2.V T
Adam FPR:0.88 AUC:0.80 ‘
—— MC-Dropout — FPR:0.82 AUC:0.80
= — Ours s | T FPR:0.88 AUC:0.70
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2
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Predictive Entropy Predictive Entropy
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Deep Reinforcement Learning

On OpenAl Gym Cheetah with DDPG Reward 5264
with DNN with [400,300] ReLU
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NN Training as Inference in LinReg

(N likelihood prior
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NeurlPS 2019

NN Training as GP Inference
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MNIST: Similarity of Examples

Kernels reveals the similarities learned by the NN.
Observations are assigned higher values for correct classes.

GP Kernel GP observations
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MNIST with only 0 and 1 Digits

When trained only on 0 &1digits, we see similar patterns for O and 1.
NN hasn’t learned meaningful similarities for out-of-training classes.
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MNIST with only 4 and 9 Digits

For harder tasks, the network is learns spurious correlations.
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Model Selection

Marginal likelihood of the GP can be used to tune hyperparameters.
In preliminary experiments, it gives better results than using ELBO!

Regularization parameter NN width
— train loss 8 — train loss 140
0.3 — test. loss | 200 Q test loss -§
= Train MargLik T 03\ —— Train MargLik =
— Train ELBO 8 130 £
w 0.2 T A =
P a0
= 120 ®
a0 -
0.1 g 0.1 Eo
120 & 110
1072 101 100 101 10° 10! 102 10°

hyperparameter ¢ width
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Relevance of Examples

Given a minibatch at each iteration, we select examples with less
noise (low variance of epsilon_i in the approximated linear model).

Lambda-guided, epoch 0

(By Roman Bachmann)



How Does This Advance Al?

» Posterior Approximations are essentially
representation of old data.

— eg, Gaussians represent 2nd-order statistics.

* This representation can be employed
— To avoid forgetting (continual learning).
— To select examples (active learning).

— To interact with the world (reinforcement
learning).

— To intervene (causal/interpretable learning).
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz khan@riken jn

Abstraci—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep nenral networks.
Variational inference circumvents thes: challenges by formulating
Bayeslan Inference as an optimization problem and solving it
using gradient-based optimization. In this paper. we argue in
faver of netural-gradient approaches which, unlike their gradien!-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. Ve show how to derive fast
yet simple natural-gradient updates by using a duoality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are zble
to extract accurate local approximations for individua! model
compoenents. We summarize recent results for Bayesian deep
leaming showing the superiority of natural-gradient approaches
over their gradient counterparts,

Indesx Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
eaponential-family distribulivns, nonconjugate models,

Didrik Nielsen
RIKEN Center for Advanced Intelligence Preject
Tokyo, Japan
didnk nielken @nker jp

prove the rate of convergence |/]-{Y]. Unlfortunately, thes:
approaches only apply to a restricted class of models known
as condirionally-confugare models, eénd do not work for non-
conjugare models such as Bayesian neural networks

This paper discusses svne recent methods that generalize
the use of natural gradiznts to such large aad complex non-
conjugare models. We show that, for exponential-family ap-
proxirmations, a duality between their natural and expectation
parametar spaces enables a simple natural gradient update.
‘T'he resulting updates are equivalent to a rzeently proposed
meathod callec Conjugate-compatation Variational Inference
(CVI) [10]. An auractive feature of the method 1s that it
nzturally ohtaing locas exponential-family approximatiors for
individual mudel components. We discuss the applicauon
of the CVI method to Bayesian neural networks énd show
some recent results from a recent work [11] cemonstiating
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Fast yet Simple Natural-Gradient
Descent for Variational Inference

Mohammad yaz Khan
RIKEN Center for Al Project, Tokyo
http://emntiyaz_github.io

o} 002 731:27

Emtiyaz Khan: Fast yet Simple Natural-Gradient Descent for Variational Inference
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