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Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too slow to adapt

https://www.youtube.com/watch?v=Txobt WAFh80 6
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Adaptation in Machine Learning

« Machines are bad in quickly adapting to changes

— Even small changes require a complete
retraining-from-scratch

— This is expensive, time consuming [1,2]
— Example: Tesla Al Data-Engine for “self-driving
cars” takes 70000 GPU hrs [3]
« Difficult to apply to domains with “dynamic” setting

— Robotics, medicine, user interaction,
epidemiology, climate science, etc.

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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July 14, 2021

Yann LeCun

So many exciting new frontiers in ML, it's hard to give a short list,

particularly in new application areas (e.g. in the physical and biological
sciences).

But the Big Question is:
"How could machines learn as efficiently as humans and animals?"
This requires new paradigms.




“Solving” Adaptation

New learning principles to answer
“When and how can a model
quickly adapt?”



Today'’s talk

* New Learning Principles for Adaptive Al

* Unify algorithms with the Bayesian Learning rule (BLR) [1]
— New work: SAM as Bayes [2]
* BLR’s “dual” perspective to “solve” adaptation,
— Bayesian Duality Principle [3, 8]
— Continual learning with memory [4,5,6,7]
— Reduce dependence on large data and compute

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)
6. Daxberger et al., Improving CL by using the Principle of Gradient Reconstructions, Under review, 2022
7. Tailor, Chang, Swaroop, Solin, Khan. Memorable experiences of ML models (in preparation)

8. Khan, Bayesian duality principle (in preparation)
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https://arxiv.org/abs/2106.08769

See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

What are the common principles
behind “good” algorithms?

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

11



The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for Al Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm

Posterior Approx. Natural-Gradient Approx.

Sec.

Gradient Descent
Newton’s method

Multimodal optimization (New)

Optimization Algorithms
Gaussian (fixed cov.) Delta method
Gaussian

Mixture of Gaussians

1.3
1.3
3.2

Stochastic Gradient Descent
RMSprop/Adam

Dropout

STE
Online Gauss-Newton (OGN)

(New)

Variational OGN (New)
BayesBiNN (vew)

Deep-Learning Algorithms

Gaussian (fixed cov.) Delta method, stochastic approx.

Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

Gaussian (diagonal cov.)

Mixture of Gaussians Delta method, stochastic approx.,

responsibility approx.
Bernoulli Delta method, stochastic approx.

Gauss-Newton Hessian approx. in
Adam & no square-root scaling

—_— Remove delta method from OGN
Remove delta method from STE

Gaussian (diagonal cov.)

Bernoulli

4.1
4.2

4.5
4.4

4.4
4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes
Laplace’s method
Expectation-Maximization
Stochastic VI (SVI)

VMP

Non-Conjugate VMP
Non-Conjugate VI ew)

Set learning rate py = 1

Delta method

Exp-family
Gaussian

Exp-Family + Gaussian  Delta method for the parameters

Exp-family (mean-field)  Stochastic approx., local p; = 1

pt = 1 for all nodes

[43 143

Mixture of Exp-family None

5.1
4.4
5.2
5.3
5.3
5.3
5.4

13



A Bayesian Origin

in £(60 vs min K v(0) — H(g
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2]
Natural and Expectation parameters of q

Ve A= oV, 10)) - Hia) )

A

|
Natural gradients (information geometry)

Many existing algorithms can be seen as special instances of the
BLR, by using approximations to g and natural gradients.

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017). 14



Why use Bayesian averaging?

Choose an “ensemble” of almost equally good
models (similar to sampling in SGD trajectories)

lteration 1

10 {3

()

"t xﬁ*{

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

T xe N

o e
& —— Adam
h

— Bayes [1,2]
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Input 1
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Deep Learning with the BLR

RMSprop BLR variant called VOGN
g+ V(6) g < VL(0), where 0 ~ N (m,c?)
s ¢ (1 —p)s+ pg* s ¢ (1= p)s+p(3ig;)
0 0—al/s+06) g m < m — a(s + ) Vel (6)
o (s+v) 1

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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https://github.com/team-approx-bayes/dl-with-bayes

Uncertainty of Deep Nets

VOGN: A modification of Adam with similar
performance on ImageNet, but better uncertainty

70f
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Code available at
https://github.com/

team-approx-bayes/
dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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https://github.com/team-approx-bayes/dl-with-bayes
https://github.com/team-approx-bayes/dl-with-bayes
https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Moéllenhoff!, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl', Mohammad Emtiyaz Khan?

s Q.

1 Approximate Bayesian Inferance Team 2 Computer Vision Graup
RIKEN Center for Al Frajact, Tokya, Japan Technical University of Munich, Gemmany

Dec 14th, 2021 — NeurlPS Warkshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)?
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Robust DL with Bayes

Adding uncertainty to Adversarial
Weight-perturbation methods

21



Thomas Moellenhoff

Robust Deep-Learning

« Sharpness-Aware Minimization (SAM)[1]

— Huge improvements over SGD/Adam

— Now used to train all sorts of models

— Why does it work, and how to improve it?
« SAM as an “optimal” relaxation of Bayes [2]

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022
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SAM as an Optimal relaxation of Bayes

SAM: sup 4 ((9 + 6)
lel<p
w
A
Our work:
P Fenchel
Biconjugate
0
P\
Bayes:

[EGNA/(O,Gz)[f(e + 6)]
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SAM = an Optimal Relaxation of Bayes
SAM (red star) upper bounds the Bayesian [Eq[f |

variance = 0.000
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SAM = an Optimal Relaxation of Bayes

SAM minimizes the best-Concave upper bound to
E q[f ] wrt the mean, while keeping variance fixed.

variance = 0.000

loss & 15
- IIIIIIE (IOSS) ."
i “ :
0% .. SAM Y
% & uh
. & &=
4 8
& n
. & nE
%o & E
W % y 4 -
-1 s, o
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Bayesian-SAM

An Adam-style algorithm, derived using the BLR, where

“perturbation-size” is automatically found using o (or s)
SAM with RMSprop SAM with BLR
g1 + VL(6) g1 + VL(0), where 0 ~ N (m,o?)
€E—p 1 €4— ,0‘ﬂ
g1 S
g« V(0 + €) g« V(0 + )
s (1 —p)s + pg* s (1—p)s+pVs|gi
0 0—a(Vs+0)lg M m—als+8)T Vel(0)
0% (s+0)"}

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022 ;¢



Improving
“overconfident” SAM

I-l.OO
-0.75
-0.50

I-0.25
-0.00

Bayesian SAM
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Towards Solving Adaptation

By using a dual perspective of the
BLR to solve continual learning

28



How to adapt the knowledge?
Perturbation, Sensitivity, and Duality
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“Model Change” and Uncertainty

We can “predict” how much a model is going to
change by using the uncertainty

“Model-change” (A) « “Uncertainty (02)”

New model

New data

1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA 1977 30



See Section 5.4 in Khan and Rue, 2021 for local parameterization
See Section 3 in ADAM et al. 2021 for dual parameterization

BLR Solutions & Thelr Duality

Zé A (1—0p) )\_vaqu 4:(0)]
Zv E-[—;(0)]
\ ¥
-

Global and local natural parameter

Local parameters are Lagrange Multipliers, measuring the
sensitivity of BLR solutions to local perturbation [1,2]. They
can be used to tell apart relevant vs irrelevant data.

1. ADAM, Chang, Khan, Solin, Dual parameterization of SVGP, NeurlPS, 2021
2. Khan, Bayesian duality principle, in preparation 31



“Memorable” Experiences
MNIST FMNIST

T-shirt Pullover SandalAnkle boot Shirt

Easy

S
2
3
2
-
7

N e I T e e
S o W
N O 2\ &R

Uncertain Outliers

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
2. Tailor, Chang, Swaroop, Solin, Khan. Memorable experiences of ML models (in preparation) 32



The tool Bayes Logistic Reg Support Vector Machine

applies to a
wide variety
of ML
models,
ranging from |
linear
models,
SVMs, and
neural
networks

33



Continual Learning

Avoid forgetting by using memorable examples [1,2]

Task 2 0 Task 3
Qo o S
Class O:: %b %’0
.E O &
IJQ: X
myin )
(@)
(@)
DDD
Task 1
Class 1

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 34



Functional Regularization of
Memorable Past (FROMP) [4]

Previous approaches used weight-regularization [1,2]

Qnew(e) — Hélél Eq(@) wnew (9)] — H(Q) — Eq(@) [lOg QOld((g)]
! New data Weight-regularizer

Replace it by a functional
regularizer using a Dual GP- Eq, e [l0g do,,, ()]
view of DNNs [2]

o(£(0)) — o (fora)] K gl (£(0)) — o (fora)]
Kernels weighs examples /~ Forces netlwork-outputs

according to their memorability to be similar

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017

2. Nguyen et al., Variational Continual Learning, ICLR, 2018
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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How to improve over weight priors?

New data Weight-prior (bad)

‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

base model—

batch training

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.



Knowledge-Adaptation Priors

K-priors use
past-memory
M (size M) in
addition to the
base model.

Weight-prior (bad)

aaaa
............
.....
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Knowledge-Adaptation Prior (K-priors)
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K-priors reconstruct the “gradients of past” by
combining weight and functional regularizers

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)
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https://arxiv.org/abs/2106.08769

Knowledge-Adaptation Prior (K-priors)

batch training—

True grads (black) ve K-priar (red)
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K-priors reconstruct the “gradients of past” by
combining weight and functional regularizers

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)
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Continual Learning on ImageNet

80% of the batch performance with 10% memory

Erik Daxberger

R e ._ ‘ﬁ
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1. Daxberg, Swaroop, Osawa, Yokota, Turner, Hernandez, Khan, Improving Continual Learning by Accurate
Gradient Reconstruction of the Past, under review. 40



Improving Continual Learning by using
the principle of gradient reconstruction

Combine previous approaches to “minimize error
in gradient of the past” (use memory)

Previous Methods Our Method
— Function Regularizer — -
—_ Z g(fw<mi)7fwold<wi)) 1
M Kprior+EWC+Repl
—Kprior+ +Replay —
Wolg M M,
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M Yy
1. Daxberg, Swaroop, Osawa, Yokota, Turner, Hernandez, Khan, Improving Continual Learning by Accurate
Gradient Reconstruction of the Past, under review. 41



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Julyan Arbel Kenichi Bannai

Research director Co-PI (Japan side)
(Japan side) (France side)

Math-Scierce Team at
Approx-Bayes team at Statify-team, Inria RIKEN-AIP ard <eo

RIKEN-AIP and OIST Grenoble Rhone-Alpes University

Received total funding of around USD 3 million through JST’s

CREST-ANR and Kakenhi Grants.

Rio Yokota

Co-PI
(Japan side)

Tokyo [nstitute of
Tecknclogy
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Summary of the talk

New Learning Principles for Adaptive Al

Unify algorithms with the Bayesian Learning rule (BLR) [1]
— New work: SAM as Bayes [2]

BLR’s “dual” perspective to “solve” adaptation,
— Continual learning with memory [4,5,6,7]
— Bayesian Duality Principle [3, 8]

» “Solve” adaptation

— When and how can a model quickly adapt?

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)
6. Daxberger et al., Improving CL by using the Principle of Gradient Reconstructions, Under review, 2022
7. Tailor, Chang, Swaroop, Solin, Khan. Memorable experiences of ML models (in preparation)

8. Khan, Bayesian duality principle (in preparation)

43


https://arxiv.org/abs/2106.08769

Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/
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