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Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too quick to adapt

TayTweets: Microsoft Al bot manipulated
into being extreme racist upon release
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Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o



https://www.youtube.com/watch?v=TxobtWAFh8o

Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives



See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

What are the common principles
behind popular algorithms?

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



Principles of “good” algorithms?

 Why Bayes?
* Information Geometry of Bayes

— To unify/generalize/improve learning-algorithms
— Optimize for “posterior approximations”

« Bayesian Learning rule (BLR)

— Derive many algorithms from optimization,
deep learning, and Bayesian inference

* Natural Gradients are Everywhere!

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



Why Bayes?

Nasty data, adaptation, uncertainty
estimation, reducing overtfitting,
model selection
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Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss t 1% P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.



Example: Which is a Better Fit?
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Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 13




Example: Which is a Better Fit?
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More data » | ess data bias with
Magnitude of Earthquake uncertainty!

Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 14



Bayesian Principles

1. Sample 0 ~ p(0) prior

2.Score  p(D|0) = H p(yilfo(z;))  Likelihood

3. Normalize A

Posterior Likelihood X Prior

p(D|0)p(0)
[ p(D|0)p(0)do

p(0|D) =

50

| :
10 50 100

A global method: Integrates over all models
Does not scale to large problem

15



Input 2

10 1

Which is a good classifier?

Input 1

16



Which is a good classifier?

Misclassified by the red
/ line, but not by the blue

What you don’t know
now, can hurt you later
“Uncertainty matters”

17



Bayesian Principles

(1) Keep your options open

p(D1]0)p(0)
| p(D110)p(0)do

(2) Revise with new evidence

_ p(D2|0)p(0]D1)
| p(D210)p(0|D;)do

Similar ideas in sequential/online decision-making
(uncertainty/randomization). Computation is infeasible.

18
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Bayesian Linear Regression (polynomials of degree 15)
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Uncertainty Estimates for Image

Segmentation
Uncertainty

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Reduce Overfitting

Standard DL Bayesian DL

Left figure is cross-validation. Right figure is “Marginal Likelihood”.

Immer et al., Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning, ICML, 2021. 21



Test accuracy (%)

Model selection without test set

The “training marginal-likelihood” can be used to
select deep-nets, without requiring the test set.

70 | =4 10M ¢
o
)
60 | e
M £ Test-accuracy correlates
50 ’ 2 with train marg-lik.
@)
100K 5 _
40 | .Q 3 Both increase as the
) A ResNet = L
LY ® CNN S  model size is increased.
30 -l' 1 1 1 1 1OK
~3.1 —-26 -21 —-1.6 —1.1 On CIFAR-100, around

22
Immer et al., Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning, /ICML, 2021.



Bayesian learning Deep learning

Not scalable Scalable

p(D|0)p(0)
pPIP) = [ p(D|0)p(0)dé

0 < 0— pH, 'Vol(0)

Bayesian Learning Rule: A < (1 — p)X — pV ,E,[£(0)]

1Y B
Can handle large data and complex models?
Scalable training?

Can estimate uncertainty?

Can perform sequential / active /online /
incremental learning?

v
v
X
X

WS XX
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Bayesian Learning Rule

“Everything” from Bayes’ geometry
New information as natural
gradients

24



The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for Al Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization vew) Mixture of Gaussians —_— 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (vew) — Remove delta method from OGN 4.4
BayesBiNN (ew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate p; =1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pr = 1 for all nodes 5.3
Non-Conjugate VMP — — 5.3
Non-Conjugate VI (New) Mixture of Exp-family None 5.4
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Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N

min £(D,0) = > lyi — folai)]> +~070
Loss t 1% P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

We will derive them as special instances of a rule
exploiting information geometry of Bayes.



Geometry of Exponential Family

We will exploit the geometry of “minimal” exp-family

Natural Sufficient Expectation
parameters Statistics parameters
b }
a(0) o exp [N T(0)] 1= B, [T(0)]

N(O|m,S™) o exp [—%(9 —m)'S(h — m)]
X exp [(Sm)TQ + Tr (—%(%T)]
| Gaussian distribution q(0) == N(0)m,S1)
Natural parameters A= {Sm,—-5/2}
_ Expectation parameters 1 := {Eq(6),E,(06")}

J

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 28



The Bayesian Learning Rule

in £(60 vs min K v(0) — H(g
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of q

A d— oV, 0) - H(g) )

A (1= p)X—pV, Eg[(0))
T |
Old belief  New information = natural gradients
Exploiting posterior’s information geometry to derive existing algorithms
as special instances by approximating g and natural gradients.

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017).




Warning!

* This natural gradient might be different from the
one what we (often) encounter in machine
learning for Maximume-Likelihood

— In MLE, the loss is the negative log
probabillity distribution

min — log g(0) = F(6)~' Vlog q(6)

— Here,e loss and distribution are two different
entities, even possible unrelated

min E [£(0)] — #(q) = F(A)~' V,E,[£(0)]
q



Gradient Descent from
Bayesian Learning Rule

(Euclidean) gradients as natural
gradients

31



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

32



See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from BLR

GD: 6+« 60— pVyl(0)
BLR: m < m — pV,,4(m)

“Global” to “local” | -
(the delta method) | 0 T PV g [£(0))

B O] = m) | A= A= pV,, (Eql€(0)] — H(q))

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(9) := A/ (m, 1)
Natural parameters Ai=m

Expectation parameters 1 := E,[0] = m
_Entropy H(q) := log(2) /2

J
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Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

Put the expectation
(Bayes) back in and
use the Bayesian
averaging.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

34



See Section 1.2, Eq 2 in Khan and Rue, 2021

Why use Bayesian averaging?

in £(60 vs min K (0) — H(qg
min (0) qETQ 2(0)[£(0)] EntSop)y

E i om.or ()] Gaussian approximation

i + First term “smooths” the loss
mesUnginal loss

—Bayasian loss to favor “flatter” regions [1]

« Second term figures out how
much to smooth (find o)

 Similar mechanisms are
used in DL [2], RL, search,
robust optimization.

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Smith et al., On the Origin of Implicit Regularization in Stochastic Gradient Descent, ICLR, 2021



See Eqg 25 in Khan and Rue, 2021 (Bonnet’s theorem)

Bayes Prefers Flatter directions

GD: 0+ 06— pVyl(0) = V,£(0:) =0
BLR: m <= m — pVpEqll(0)] = V,E[£@)]=0

sigma = 0.01

wes Orlginal loss
—— Bayasian loss
Bayesian solution
Injects “noise” which has
a similar regularization
effect to noise in

Stochastic GD. It prefers
“flatter” directions.




SGD: Implicit Regularization

(By Thomas Moellenhoff)



GD: Implicit Regularization

SGD. Sep-Size=250

SGD. Swp-Sica-00

SGD. Step-Size=1000

S O 8=2000
S50, Step-Sze=000

38



Bayes: Explicit Regularization

Estimating Gaussian posteriors where the
variance is fixed, and only the mean is estimated [E_ [ V£ (0)] =0

By increasing the
2 variance, we can
move the mode
15 arbitrarily far.

10 . .
Bayesian“noise”
has a similar
regularization to
: the SGD noise.
It prefers “flatter”
g . directions.




Newton’s method from
Bayesian Learning Rule

(Gradient, Hessian) as natural
gradients

40



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from BLR
Newton’s method: 0 < 6 — H, " [Val(0)]

(Sm — (1 - )Sml— pPVE, () Eq[l(0)]
- —S — QE2)8) P IDY ooy EEP)
e N— X (B V(B @ q)) (—V,.H(q) = A

Derived by choosing a multivariate Gaussian
1 )
)

" Gaussian distribution g(6) := N (8|m, S
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 41



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from BLR

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]

(o m — pS_lvmﬁ(my

S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, (007 Eq€(0)] = Eq[Ho|
(Sm — (1= p)Sm — pVi, (5, Bq[(0) J
S+ (1—p)S— P2VE 907 Eq 4(0)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)

42



See Section 4.2 in Khan and Rue, 2021

RMSprop/Adam from BLR

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

To get RMSprop, make the following choices
* Restrict covariance to be diagonal

* Replace Hessian by square of gradients

* Add square root for scaling vector

For Adam, use a Heavy-ball term with KL
divergence as momentum (Appendix E in [1])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



Practical DL with Bayes

RMSprop BLR variant called VOGN
g+ V(6) g < VL(0), where 0 ~ N (m,c?)
s ¢ (1 —p)s+ pg* s ¢ (1= p)s+p(3ig;)
0 0—al/s+06) g m < m — a(s + ) Vel (6)
o (s+v) 1

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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https://github.com/team-approx-bayes/dl-with-bayes

Why use Bayesian averaging?

Choose an “ensemble” of almost equally good
models (similar to sampling in SGD trajectories)

lteration 1

10 {3

()

"t xﬁ*{

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

T xe N

o e
& —— Adam
h

— Bayes [1,2]
T T I
-5 0 5
Input 1
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Uncertainty of Deep Nets

VOGN: A modification of Adam with similar
performance on ImageNet, but better uncertainty

70F
9
>
@)
©
-}
@)
@)
©
C
S
S5 —— SGD
§ 30f —— Adam
—— VOGN
20 20 40 60 80

epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Moéllenhoff!, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl', Mohammad Emtiyaz Khan?

s Q.

1 Approximate Bayesian Inferance Team 2 Computer Vision Graup
RIKEN Center for Al Frajact, Tokya, Japan Technical University of Munich, Gemmany

Dec 14th, 2021 — NeurlPS Warkshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020). 47



i

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)+s



Summary

* Gradient descent is derived using a Gaussian with fixed
covariance, and estimating the mean

* Newton’s method is derived using multivariate Gaussian
* RMSprop is derived using diagonal covariance

» Adam is derived by adding heavy-ball momentum term
* For “ensemble of Newton”, use Mixture of Gaussians [1]

* To derive DL algorithms, we need to use the Delta
method (a local approximation) E_[¢(6)] ~ ¢(m)

* Then, to improve DL algorithms, we just need to add
some “global” touch by relaxing the local approximation

1. Lin, Wu, Mohammad Emtiyaz Khan, and Mark Schmidt. "Fast and Simple Natural-Gradient Variational
Inference with Mixture of Exponential-family Approximations." ICML (2019).

49



Bayes’ Rule from Bayesian
Learning Rule



Bayesian Inference as Optimization

p(DI]0)p(H) (
POID) = D16\ p(6)ds (Pl)pE)
= argmin E ) [0(0)] — H(q)
9€P q| Entropy
All distribution Distribution
- (9) ~
q
=[E,[¢(0)] + E,[logq(0)] =E, {log 65(9)}
= a:(0) e (D)) xpOID)

Good news: This holds for a generic loss function!

Zellner (1988), Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006) ‘.



See Section 1.3.3 and Section 5.1 in Khan and Rue, 2021

Bayesian Inference from BLR

Ex: Linear model, Kalman filters, HMM, etc.
f(@) = lng(D‘H)p(H) — —)\T(g) __ Sufficient

statistics of g

00) = (y—X0)" (y— X0)+~6"0
=20 (X"y)+ Tr[00" (X' X +~I)] + cnst

— Eq[0(0)] = —dpp = V,E l(0)] = —Ap
A A — pWWABH@)] + X(q) = . :

Forward-backward, SVI, Variational message Meslsages
passing etc. are special cases of the BLR

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



The Bayesian “Principle”

argmin K, ) [£(0)] — H(q)
qef : Entropy
All distribution Distribution 8(9) — 1ng(D\9)p(9)

Restrict the set of distributions (change P to Q)

arg min E,0)€(0)] — H(q)

Often we call this variational Inference, but it’s not
just a method, rather a general Bayesian principle.

Similar to IGO [1] but the entropy is essential!

1. Ollivier et al. "Information-geometric optimization algorithms: A unifying picture via invariance
principles.” JMLR (2017).



See Section 1.2 in Khan and Rue, 2021

Our use of natural-gradients here is not & matter of choice, In fact, natural-gradients are inierently
present in all solutions of the Bayesian vbjective in Eq. 2. Lor example, o solution of g, 2 or equivalently
a fixed paint of [Fa. 3l satisfics the following,

V. Fi0)] = ¥, Hiq.), which implies v ARg [ F@Y = A, (5)
for candidates wilh constant base-reasure. "Lhis is oblained by setling the gradient of lq. 2 to 1), then
noting that V,Hig) = —A l,Ipr. Bt‘, and then interchanging V. by Vi (because ol g, 4). In other
vords, nabural parameter of the best ¢ (@) is equal Lo the patural gradient of the expected vegative-loss.
The importance of natursl-gradients is entively missed in the Bayesisn/varistional inference literature,
including textbooks, reviews, tutorials on this topic [Bishop, 2006. Murphky, 2012, Blei et al., 2017,
Zhang et al., 2018a) where natural-gradients arve often put in a special category.

We will show that natural gradients retrieve essential higher-order information about the loss land-
seapc which are then assigned to appropriatc natural parameicers using[Fj—._.’j; The infarmation-matching
15 dur to the presenee af the entropy term there, which 3= an important gnantity far the optimaliry
of Bayes in general [Taynes| 1982, Zellner, 1988, Littlestone and Warmuth, 19%4, Vavk, 1090/, and
which is generally absent in non-Bayesian formulations (Eq. .I.I The entropy term in general leads to
exponential-weighting in Bayes’ rule. In our context, it gives rise to natural-gradients and, as we will
soon see, automatically determines the complexity of the derived algorithm through the complexity of
the class of distributions @, yielding a prinecipled way to develop new algarithms.

Ovarall, iy work demenstrases the importanee of narnral-gradients and information geomaetry for
algorithm design in MT.. This is similar in spirit to Informatien Geometrie Optimizazion [Ollivier er al.|
2017, which focnses on the optimization of black-hox, deterministic fanetions. Tn cantrast, we derive
generie learning algorithms by using the same Bayesian principles. T'he BLLR we nse 3= a generalization
of the method proposed in Khan snd Lin/[2017), Khan sod Nielsen [2018] specifically for approximale
Bavesian inlerence, Here, we establish it as 4 general learning rule to derive many old and new learning
algorithms, which include hoth Bayesian and non-Bayesian ones, way beyond its ariginal propasal. We
do nat claim that these suceessful algarithms wark well becanse they are derived from the BLR. Rather,
we nse the BLR ra simply unravels the inherent Bayesian nature of these “good” algorithms. Tn this

SONSC, Lne AU UHTE D NCCH RS A \')l!'illll . €D "V(‘:*. e, Il.‘(f‘ll ‘()r ‘(Tll(fl’i(f i (II":I AT < 1'ﬁi .
. the BLIT van b & of B le, nseful | Igarithrn d
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Principles of “good” algorithms?

* Information Geometry of Bayes

— To unify/generalize/improve learning-
algorithms

— Optimize for “posterior approximations”
* Bayesian Learning rule (BLR)

— Derive many algorithms from optimization,
deep learning, and Bayesian inference

* Natural Gradients are Everywhere!

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
Lin et al., Tractable structured natural gradient descent using local parameterizations, ICML 2021
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What’s Next

* Bayesian “Duality” Principle
— The BLR unravels a duality perspective of good
algorithms

— Unifies many results from many fields

» convex duality, Kernel methods, Bayesian nonparametric
methods, Deep Learning, Robust statistics, and Information
Geometry

— Helps to “solve” the Adaptation problem

* My talk on Monday will show two examples of this principle
— Robust deep learning as “convex relaxation” of Bayes
— Principle of Adaptive learning through K-priors



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans
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