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Al that learn like humans

Learn and adapt quickly throughout their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Bayesian Principles

l This talk

Human learning ;A Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

My current research focuses on reducing this gap!

1. Parisi, German |., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

2. Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)



Bayesian (principles for) Learning Machines

Bayes is essential for human-like learning,
but infeasible

Principle |: Bayes Learning Rule (estimation)
Principle |I: Bayes dual (explore-exploit)
The way forward to human-like learning

Disclaimer:Focus on the concepts rather
than the details



BaVESian (Principles for) Learning Machines

* Bayes is essential for human-like learning,
but infeasible



Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss 1 ¢ P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.



Which is a good classifier?
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Input 2

Which is a good classifier?

Misclassified by the red
/ line, but not by the blue

The main challenge
of life-long learning:

“The Past can come
back to hurt you”
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Life-Long Deep Learning?
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ver revisited

Update
Deep
Network
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Standard deep learning forgets the past data.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the

national academy of sciences 114.13 (2017): 3521-3526.

Update Deep
Network
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Bayesian Principles

(1) Keep your options open

p(D1]0)p(0)
| p(D110)p(0)do

p(e\pl) —

(2) Revise with new evidence
_ p(D2[0)p(0|D1)
| p(D2|0)p(0|Dy)do

Similar ideas in sequential/online decision-making
(uncertainty/randomization). Computation is infeasible.
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Bayesian (principles for) Learning Machines

* Bayes is essential for human-like learning,
but infeasible

* Principle I: Bayes Learning Rule (estimation)



Learning-Algorithms from Bayes

Approximate Bayes with the Bayesian learning rule
Posterior Approximation <=> Learning-Algorithm

Complex < >  Simple

. Gradient
Bayes’ rule Mixture Newton  pascent

of Newton
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Bayesian Learning Rule

Entropy

min £(6) vs min E ) [(0)] — H(q)
Exponential-family Approx.

Deep Learning algo: § « § — pH, "V 4(6)
Bayes learning rule: A < A — pV, (E,[£(0)] — H(q))

| t ™~ Natural Gradient
Natural and Expectation parameters of

an exponential family distribution g
Deep Learning algorithms can be obtained by

1. Choosing a Gaussian approximation,
2. Giving away the “global” property of the rule

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).
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Bayesian learning rule: A < A —pV,

Learning Algorithm Posterior Approx. Algorithmic Approx. Sec.
Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta approx. 1.4

Newton’s method Gaussian — 14

Multimodel optimization ew)y Mixture of Gaussians “ 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent — Gaussian (fixed cov.) Delta approx., Stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) |Delta approx., Stochastic approx., | 4.2,
Hessian approx., Square-root scal- | 4.3
ing, Slow-moving scale vectors

Dropout Mixture of Gaussians Delta approx., Stochastic approx., 4.4
Responsibility approx.

STE Bernoulli Delta approx., Stochastic approx. 4.6

Online Gauss-Newton (OGN) | Gaussian (diagonal cov.) | Gauss-Newton Hessian approx. in| 4.5

(New) Adam & no square-root scaling

Variational OGN (New) “ Remove Delta approx. from OGN | 4.5

Bayesian Binary NN (New) ‘ Remove Delta approx. from STE 4.6

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate p = 1 5.1

Laplace’s method Gaussian Delta approx. 5.2

Expectation-Maximization Exp-Family + Gaussian Delta approx. for the parameters 5.3

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local rate pr =1 5.4

VMP ‘ Set learning rate p, = 1 5.4

Non-Conjugate VMP “ ‘ 5.4

Non-Conjugate VI (vew) Mixture of Exp-family None 5.5

(Eq[€(0)] = H(q))

Khan and Rue. “Learning-
Algorithms from Bayesian
Principles” (2020)

We can design new
algorithms by relaxing the
approximations.

For example, to estimate
uncertainty via Adam, we
can put back the
expectation wrt q. This
gives us the VOGN
algorithm.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf

NeurlPS 2019

Tutorial
#NeurlPS 2019
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Human Learning at
the age of 6 months.
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From System 1 Deep Learning to System2  NeurlPS Workshop on Machine Learning
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Uncertainty Estimation in DL

VOGN: A modification of Adam but match the
performance on ImageNet

Ilteration 1
70F
101
> 60}
5] o
©
~ 3 50|
3 S
0_
= § 40|
©
;| O — SGD
- ;a‘ —— Adam ‘_>° 30 == Adam
J'_ —— VOGN — VOGN
5 5 5 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

Continual Learning: Fixing Bayes

VCL is Bayesian method, trained using SGD, & performs poorly
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1. Nguyen et al. “Variational Continual Learning.” ICLR (2018).

Best Possible
(batch training
split-CIFAR)

O EWCy
O Sli

————— Separate
Training

2. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
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Continual Learning: Fixing Bayes

Bayesian Learning Rule (VOGN) fixes the gap

080 Best Possible
> (batch training)
Som| 8 g © 3 VOGN.

g -9 s VCL
Eo.m % 8 .
S Q Q@ EWCp

0.65 Q Sl

————— Separate
Training

Taskl Task? Task3 Task4 Taskb Task6

1. Nguyen et al. “Variational Continual Learning.” ICLR (2018).
2. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
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Bayesian (principles for) Learning Machines

* Bayes is essential for human-like learning, but infeasible

* Principle |: Bayes Learning Rule (estimation)
— Unity, generalize, and improve learning-algorithms
— Application: Uncertainty estimation in deep learning
° PrinCipIe |l Bayes dual (explore-exploit)
— Knowledge transfer using a dual representation
— Application: Continual learning of deep networks



Relevance of Data Examples

Which examples are most relevant for the
classifier? Red circle vs Blue circle.
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Model view vs Data view

Bayes “automatically” defines data-relevance

A P Data

I E view
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(By Roman Bachmann)



Bayes Duality

 DNN2GP: Gaussian approx fom Bayes learning rule
connect NN to Linear models & Gaussian Process (GPs) [1].

Z€ vir o)) ~ Z %[@z‘ — () ' 0]

. A
=1  neural network =1 ?Z | |

“Dual” variables obtained from V ,E,[¢;(0)]
(For Gaussian approx, obtained from Jacobian, residual etc.)

* sigma_i"2 defines the “relevance” of the data examples.
We call more relevant ones the “memorable examples”.
* Natural-gradients give “dual variables” (Bayes Duality)

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 25
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Least Relevant

Most Relevant
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Continual Learning with Bayes Dual

Before: Use past posterior as
prior for the next task

 p(Dal0)p(0]Dy)
| p(D2|0)p(0|D1)d0
Gauss Approx (weight regularization [1])

(0 = 0,) 25,0 = 0,19)

p(8’D27 Dl)

New ldea: Don't let the predictions of memorable
examples change (functional regularization with GPs)

!
106, = Fytd )| Kotdos %)™ 10X, = X,

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017 28



Functional Regularization of
Memorable Past (FROMP)

Regularize the function outputs.
Simply adds an additional term in Adam.

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, Openreview, 2019 4



Continual Learning: Improving Bayes

VOGN uses Gaussian posterior as prior in “weight-space”, does
not perform significantly better than other methods

Eo.m % 8 .8 o VCL
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1. Nguyen et al. “Variational Continual Learning.” ICLR (2018).
2. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017 30



Continual Learning: Improving Bayes

FROMP uses a GP prior in “function-space” over the
“memorable pasts” and improves the performance.
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1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, Openreview, 2019 31
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Bayesian (principles for) Learning Machines

* Bayes is essential for human-like learning,
but infeasible

* Principle I: Bayes Learning Rule (estimation)
* Principle ll: Bayes dual (explore-exploit)
* The way forward to human-like learning
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Human Learning at
the age of 6 months.
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Bayes is indispensable for an Al that
learns as efficiently as we do

Continual Active
Learning learning
Online
BayeS|an learning

Principles

(Explore-exploit) _
Reinforcement
Learning
Federated
learning
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How to design Al that learn like us?

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q3: What do we need to know? (action & exploration)

* Posterior approximation is the key
— (Q1) Models == representation of the world
— (Q2) Posterior approximations == representation of the model
— (Q8) The Bayes-dual representation will enable
 represent learned knowledge,
* reuse them in novel situations,
* interact with the environment to collect new knowledge



Learning-Algorithms from Bayesian Principles

Mohammad Emtiyaz Khan
RIKEN center for Advanced Intelligence Project
Tokyo, Japan
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Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, Adam, and Dropout. The key
idea is to estimate posterior approximations using the Bayesian learning rule. Different approximations
then result in different algorithms and further algorithmic approximations give rise to variants of
those algorithms. Our work shows that Bayesian principles not only unify, generalize, and improve
existing learning-algorithms, but also help us design new ones.

Available at
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
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