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Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too slow or quick to adapt
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https://www.youtube.com/watch?v=TxobtWAFh80 5



https://www.youtube.com/watch?v=TxobtWAFh8o

Adaptation in Machine Learning

* Even a small change may need retraining

* Huge amount of resources are required only
few can afford (costly & unsustainable) [1,2, 3]

* Difficult to apply in “dynamic” settings (robotics,
medicine, epidemiology, climate science, etc.)

* QOur goal is to solve such challenges
— Help in building safe and trustworthy Al
— But also to reduce “magic” in deep learning

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s



https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Towards Quick Adaptation

* Better uncertainty [1-4]
— Bayesian Learning rule (BLR)
* Better regularization [5-8]
— Knowledge-Adaptation Priors (K-priors)

* Better memory [9]
— Memory Perturbation Equation (MPE)

. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

. Khan, et al. Fast and scalable Bayesian deep learning by weight-perturbation in Adam, ICML (2018).
. Osawa et al. Practical Deep Learning with Bayesian Principles, NeurlPS (2019).

. Lin et al. Handling the positive-definite constraints in the BLR, ICML (2020).

. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021)

. Pan et al. Continual deep learning by functional regularisation of memorable past, NeurlPS (2020)

. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).

. Daheim et al. Model merging by uncertainty-based gradient matching, arXiv 2023.

. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)



Example: Continual Learning
N\

Standard

Deep

Learning

Continua

Learning: past classes never r

Select a random
subset of images

ﬁ m
N

evisited
Observe Update Observe Update
categories Deep categories Deep
Dog vs. Cat Netv:/ork > Lion vs. Tiger 5 Netvs./ork

Standard training leads to catastrophic forgetting.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the

national academy of sciences 114.13 (2017): 3521-3526.

Update Deep
Network




Bayesian Learning Rule

Better Uncertainty



Weight Regularization

Standard way to is to add a weight-regularizer [1]
(0 — 0o1a) " Fora (0 — Oo1a)

A

I Weight uncertainty

Straightforward improvement in weight-uncertainty
IS to use variational inference [2-4]

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017

2. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam.” ICML (2018).

3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

4. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020). 0



Practical Deep Learning with Bayes

A reliable estimate of Fisher/Hessian/variance

RMSprop Bayesian Learning Rule [3]

g < VL(0) g <+ VL(9)

h<g-g hg-/s-e

s« (1 —p)s+ph s+ (1 —p)s+ ph+p°h?/(2s)
0 —60—ag/\s m«m-—ag/s

0% 1/s, < m +e~N(0,1/5s)

Costs are exactly the same, but the
variance quality is much better!!

2nd-order method that works at scale.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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Uncertainty of Deep Nets

Better uncertainty than Adam but similar accuracy

ImageNet Results
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Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Méllenhoffl, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl!, Mohammad Emtiyaz Khan1

1 Approximate Bayesian Inference Team 2 Computer Vision Group
RIKEN Center for Al Project, Tokyo, Japan Technical University of Munich, Germany

Dec 14th, 2021 — NeurlPS Workshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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1. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

Continual Learning

CIFAR10
S
& BLR[1]
5 —f—— 8 owvL
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Q —Joint

Taskl Task?2 Task3 Task4 Taskb Task6
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Bayesian learning rule (BLR) X < (1 — p)\ — pV, E,[£(0)]

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)

2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017).

See Table 1 in

Khan and Rue, 2021

All sorts of
algorithms can be
derived by using two
sets of
approximations.

By relaxing the
approximations, we
get an improvement,
for example,
uncertainty aware
deep learning
optimizers

15



Bayesian-SAM

An Adam-style algorithm, derived using the BLR, where
variances are automatically learned.

SAM with RMSprop SAM with BLR
g1 < VE(0) g1+ V(6)

e p g1 ,0_’

lg2 ] €T o

g VL6 + ¢) g VIO + ¢)

s (L=p)s+pg’ s (1—p)s+ pv/slg1]

0 0—a(vVs+d) g 0—0—a(s+7v) g

0 (s+v9)7H 0 m+éo

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022  1¢



Knowledge-Adaptation Prior



Functional Regularization of
Memorable Examples [2]

Task 2
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1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Improvements over EWC and VOGN
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Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS 2020
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Functional Regularization of
Memorable Past (FROMP)

Weight-regularizer (EWC) [1]
(0 — 0o1a) " Fora(0 — Oo1a)

A

I Weight uncertainty
Functional regularizer (FROMP) [2]

o (£(0)) — o(fora)] " K gl (£(6)) — ?(fozd)]
Unclertainty Predictions

Why does this work? It is a way to replay past
gradients, which leads to the idea of K-priors.

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Intuition behind K-priors

o
+ +$++# + New data Often, only a small
o fraction of old data is
+ Ghh ffected
:[5_ i e ==|§‘!='|' + a eC e .
N A
ST -
~

~
base model— ~

batch training—; 5 Binary
classification with

Logistic regression

. Each task N=500,
each class 250
examples.
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Intuition behind K-priors

Often, only a small
fraction of old data is
affected.

V¢ ,/(0) = VKprior(0)
Memory(M=4)

base model> ~

Binary
classification with
Logistic regression

batch training

N Each task N=500,
each class 250

examples.
22



Easy to see in Linear Regression

Weight-space Function-space

arg mein Lo = 61I° + lly — X6||7
(0 = Op) ' Fopd0 = 0,19) = (0= 6,)" U+ XTX)(0 ~ )

Entirely in weight-space (EWC) [1] ) )
= |0 — 0,4ll" + 1|1 XO — X6,
old old
Weight-space Function-space
Knowledge-adaptation prior [3]

= (X0 -X0,,) K~ 1(X0 - X6, ,)
Entirely in function-space (FROMP) [2]

0

In linear regression, they are equivalent and are all
ways to reconstruct the old problem (or its gradients)

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020

3. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021



Knowledge-Adaptation Priors

Combine weight and function-space divergences

Weight-space Function-space
K(0) = Dy (0]|0o1a) + D¢ (£(6)||£(o1a))
} N
Candidate - r1 1 T r1 7
w W
N 2 2
~ w W 4
~ - 3 3
base model— w W
w | | fa.

K-prior is a way to
replay past gradients
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A General Principle of Adaptation

Reconstruct past gradients

M=0 True grads (black) vs K-prior (red)
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1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)
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https://arxiv.org/abs/2106.08769

How to combine EWC + FR + Replay

Combine approaches to (successively) reduce grad-reconstruction error

Previous Methods

Wold Folq

Wold

—EWC

(w—wo1q) F old (w—wolq)

Function Regularizer (FR),

Z K(f’w(ml)7 fwold (w’b))

ieM

Experience Replay —

> Ui, fuw(:))

1eM

Our Method
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—

Wold M;

Mo Yy

'

— EWC+FR+Replay ————

(w—wo1d) F o1\ m (W—wola)
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+ ) i, fu(:)

1EMy
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1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023.
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Model Merging for LLMs

RoBERTa on IMDB

Htarget
6

:5 DTusk Arithmetic
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O |
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Phe Omerged ~~ - 5

-7 T~ 0.2 0.4

O : O Gradient mismatch
92 91
2 _ _ 2 L
A =3 Vel (Ourger) — VI (0:) = > Hy Toxicity removal from GPT (1.3B)
t:]_ N vV ’ t: 1
Gradient Mismatch Model (7] Toxicity Fluency
100-Avg. Num. Toxic PPL(])
GPT2117M HLLM 11.2 15.4 % 24.9
TA 9.8 13.1 % 30.3
ours 9.6 (102 12.8 % (103) 26.9 (13.4)
GPT-J133 Oum 119 16.6 % 12.6
TA 10.7 14.5 % 12.7
ours 10.2 (105 14.0 % o5 12.8 (Jo.n

1. Daheim et al. Model merging by uncertainty-based gradient matching, arXiv 2023.
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Memory-Perturbation
Equation



Intuition behind K-priors

T
o ¥+ New data

-.':“- s
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BRE.

~
base model— ~

batch training—;

Binary
classification with
Logistic regression

. Each task N=500,
each class 250
examples.
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Intuition behind K-priors

+

base model> ~

Binary
classification with
Logistic regression

batch training

N Each task N=500,
each class 250
examples.
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Memory and Sensitivity

Past information with most influence on the present

Truth
O @Estimated
A

Current

Computing the algorithm-deviation by retraining is
expensive. We want to estimate it without retraining!

31



Memory Perturbation

How sensitive is a model to its training data?
Deviation (A) = predictionError *predictionVariance

New model

O New data

1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA 1977
2. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023
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Memory Maps using the BLR

Understand generic ML models and algorithms.

Regular examples Unpredictable  Uncertain
000690 o Q@ J o <
v 11 | 7 N1 47
& 2 24 08 7 v oy > 7
> 8 =

3 3 Lu()ﬁ 5 6 6 6 9

YAy s 7 A ¢ ¥ 7

:f 2‘2 EM' 6 %I 9
@ O B € £ ¢
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0.0 0.1 0.2 0.3 q ? ‘ ‘\ )

Prediction Variance
1. Tailor, Chang, Swaroop, Nalisnick, Solin, Khan, Memory maps to understand models (under review) 33



A Tool for Data-Scientists

Understand the memory of a model.

34



Predict Generalization during Training

CIFAR10 on ResNet-20 using BLR [1]. SGD or Adam also
works but better uncertainty gives better estimates.

1.8

NLL

0.6

1.21

Leave-One-Out
Estimates on
training data

and during training

l

100 200 300
Epochs

1. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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Towards Quick Adaptation

* Better uncertainty [1-4]
— Bayesian Learning rule (BLR)
* Better regularization [5-8]
— Knowledge-Adaptation Priors (K-priors)

* Better memory [9]
— Memory Perturbation Equation (MPE)

. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

. Khan, et al. Fast and scalable Bayesian deep learning by weight-perturbation in Adam, ICML (2018).

. Osawa et al. Practical Deep Learning with Bayesian Principles, NeurlPS (2019).

. Lin et al. Handling the positive-definite constraints in the BLR, ICML (2020).

. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021)

. Pan et al. Continual deep learning by functional regularisation of memorable past, NeurlPS (2020)

. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).

. Daheim et al. Model merging by uncertainty-based gradient matching, arXiv 2023.

. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023) 36



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Emtiyaz Khan Julyan Arbel Kenichi Bannai
Research director Research director Co-PI (Japan side)
(Japan side) (France side)

Math-Science Team at
Approx-Bayes team at Statify-team, Inria RIKEN-AIP and Keio
RIKEN-AIP and OIST Grenoble Rhéne-Alpes University

Received total funding of around USD 3 million through JST’s

CREST-ANR and Kakenhi Grants.

Rio Yokota

Co-PI
(Japan side)

Tokyo Institute of
Technology
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Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/

Many thanks to our group
members and collaborators

Emtiyaz Khan Thomas Méllenhoff Geoffrey Wolfer Hugo Monzén

(many not on this slide).
Team Leader Research Scientist Special Postdoctoral Maldonado
Resesarcher Postdoctoral
Researcher

We have open positions
and are always looking for
new collaborations.

Keigo Nishida Gian Maria Marconi Lu Xu Peter Nickl

Postdoctoral Postdoctoral Postdoctoral Research Assistant
Researcher Researcher Researcher
RIKEN BDR

7 e
' e
Etash Guha Pierre Alquier Dharmesh Tailor
Intern Visiting Scientist Visiting Scientist Remote Collaborator
Georgia Tech University of ESSEC Business University of

Winsconsin-Madison School Amsterdam 38
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