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AI that learn like humans

Quickly adapt to learn new skills, throughout 
their lives
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Human Learning at 
the age of 6 months.
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Converged at the 
age of 12 months
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Transfer 
skills

at the age 
of 14 

months



Fail because too slow to adapt

6h"ps://www.youtube.com/watch?v=TxobtWAFh8o The video is from 2017

https://www.youtube.com/watch?v=TxobtWAFh8o
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Quickly adapt to learn new skills, throughout 
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Robust Deep-Learning
• Sharpness-Aware Minimization (SAM)[1]

– Huge improvements over SGD/Adam
– Now used to train all sorts of models 
– Improves test accuracy for trained neural networks (ResNets 

[1,2,3], Vision-Transformers [4], Language Models [5], …) 
– Also improves robustness [3], calibration [2], interpretability [4], 

transfer-learning [4], compressibility [5], federated learning [6]
• Why does it work, and how to improve it?
• SAM as an “optimal” relaxation of Bayes [7]
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Thomas Moellenhoff

1. Foret et al. Sharpness-aware minimization for efficiently improving generalization. ICLR 2021.
2. Wu et al. Adversarial Weight Perturbation Helps Robust Generalization . NeurIPS 2020.
3. Zheng et al. Regularizing Neural Networks via Adversarial Model Perturbation . CVPR 2021.
4. Chen et al. When Vision Transformers Outperform ResNets without Pretraining or Strong Data 

Augmentations. ICLR 2022.
5. Na et al. Train Flat, Then Compress: SAM Learns More Compressible Models.  EMNLP 2022.
6. Qu et al. Generalized Federated Learning via Sharpness Aware Minimization. ICML 2022.
7. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, arXiv, 2022.



Flat Minima in DL

• Empirical [1] and theoretical [2] evidence suggest that 
finding “flat minima” is desirable
– Several ways to bias the learning towards flatter 

minima, e.g., in SGD via batch-size or learning rate
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1. Jiang et al., Fantastic generalization measures and where to find them, ICLR 2020. 
2. Dzuigate and Roy, Computing nonvacuous generalization bounds for deep (stochastic) neural 

networks with many more parameters than training data, UAI 2017.. 



Flat Minima via Learning Rate in SGD
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Flat Minima via Adversarial Weight-
Perturbation
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ρ

θ

sup
|ϵ|<ρ

ℓ(θ + ϵ)SAM:



Flat minima via Bayesian Learning 
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Gaussian approximation

vs
Entropy
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𝔼𝒩(θ|m,σ2)[ℓ(θ)]
• First term“smooths” the loss 

by weight perturbation

• Similar mechanism to SAM 
by it is the “expected-loss” 
instead of “max-loss”
• An advantage of Bayes is 

that the second term can be 
used to estimate σ

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021 
2. Smith et al., On the Origin of Implicit Regularization in Stochastic Gradient Descent, ICLR, 2021

See Section 1.2, Eq 2 in Khan and Rue, 2021

𝔼𝒩(ϵ|0,σ2)[ℓ(m + ϵ)]



SAM as an Optimal relaxation of Bayes
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ρ

θ

Bayes:

𝔼ϵ∼𝒩(0,σ2)[ℓ(θ + ϵ)]

sup
|ϵ|<ρ

ℓ(θ + ϵ)SAM:

Our work: 
Fenchel  

Biconjugate



SAM as a relaxation of Bayes
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SAM (red star) upper bounds the Bayesian 𝔼q[ℓ]



Optimal relaxation: Fenchel Conjugate
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SAM minimizes the best-concave upper bound to
 wrt the mean, while keeping variance fixed.𝔼q[ℓ]



Legendre-Fenchel Transform
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f*(v) = sup
u∈U

⟨v, u⟩ − f(u)

+
:

if
:*

-

-

÷.: ↳

tut
f(μ) = 𝔼θ∼qμ

[−ℓ(θ)]

Our bound is obtained in the 2D space 
of “expectation parameters” of 
Gaussians win mean  and variance ω v

Fenchel conjugate

f**(u) = sup
v∈V

⟨u, v⟩ − f*(v)

Fenchel biconjugate

The bound in the previous slide is 
in  parameterization(ω, v)

μ = (ω, ω2 + v)Expectation parameter

Mean Variance



Relaxed Bayesian Objective

• The relaxed objective

• This is a difference of convex objective, for which 
there is a dual problem [1]

• In our case, the dual problem can be rewritten in the 
following form:

17[1] John F Toland. Duality in Nonconvex Optimization . Journal of Mathematical Analysis and Applications, 1978.

max
μ

f**(μ) − g(μ) = max
λ

[−f*(λ) + g*(λ)]
Natural parameter



Our Result: Relaxed Bayes is SAM!
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ℰSAM(θ; ρ, δ) = [ sup
∥ϵ∥≤ρ

ℓ(θ + ϵ) ] +
δ
2

∥θ∥2

Essentially, for fixed variance, we can always 
recover SAM’s solution by minimizing the relaxed-

bases objective with respect to the mean



Improving SAM

19[1] M. E. Khan, H. Rue. The Bayesian Learning Rule  arXiv:2107.04562, 2021.

We can obtain the variance by optimizing the 
relaxed Bayes objective. Below is the Fenchel 

biconjugate where a covariance  is usedΣ

We use the Bayesian learning rule (BLR) [1] to do 
that, because it gives an Adam-Style objective

Covariance

PriorNatural gradientNatural parameter



Bayesian-SAM
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SAM with RMSprop

An Adam-style algorithm, derived using the BLR, where 
“perturbation-size” is adjusted by using  (or )σ2 s

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021 
2. Moellenhoff and Khan, SAM as an optimal relaxation of Bayes, https://arxiv.org/abs/2210.01620, 2022 

SAM with BLR



Improving 
“overconfident” SAM
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(a) Exact Bayes (b) bSAM (c) SGD (d) SAM

Figure 3: We show the predictive softmax uncertainty for an exact Bayesian posterior (Fig. 3(a)),
bSAM (Fig. 3(b)), the SGD (Fig. 3(c)) and SAM (Fig. 3(d)) solutions on a simple 2D logistic
regression problem.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical results and show that bSAM brings the best of the two worlds:
it improves generalization performance, similarly to SAM, but also gives an improved uncertainty
estimate similar to the best Bayesian approaches.

We compare performance to different methods from the DL & Bayesian DL literature: SGD,
Adam (Kingma & Ba, 2014), SWAG (Maddox et al., 2019), and the VOGN method (Osawa et al.,
2019). We also compare with two SAM variant: SAM-SGD and SAM-Adam. Both are obtained by
inserting the perturbed gradients into either SGD or Adam, as suggested in (Foret et al., 2021; Bahri
et al., 2021; Kwon et al., 2021). We compare these methods across three different neural network
architectures and on five datasets of increasing complexity.

The comparison is carried out with respect to four different metrics evaluated on the validation set.
The metrics are generalization accuracy, negative log-likelihood, expected calibration error (Guo
et al., 2017) (using 20 bins) and area-under-ROC curves (Osawa et al., 2019).

For methods which estimate a distribution q(✓) in parameter-space, we report the performance at the
Bayesian model average for the predictive distribution p(y | D) =

R
p(y | D,✓) q(✓) d✓. In our ex-

periments, the above integral is approximated using 32 models drawn from q(✓). All further details
about the individual hyperparameters of the methods and the experimental setup are in App. H.

4.1 ILLUSTRATION ON A TOY EXAMPLE

Fig. 3 compares the uncertainty obtained by bSAM to the exact Bayesian posterior and the
SGD/SAM solutions on a simple Bayesian logistic regression problem. In this simple example,
we can see that the bSAM result is comparable to the exact posterior and how our proposed method
can be used to estimate uncertainty on top of SAM. The details of this experiment are described
in App. G.1.

For the logistic regression problem of Fig. 3, an exact minimization of the relaxed Bayes objective is
also feasible. This allows us to understand the gap induced by the relaxation via the convex lower-
bound. In App. G.2 we compare an exact minimization of the relaxed Bayes objective (11) with the
original Bayesian objective (2) for a full Gaussian distribution.

4.2 UNCERTAINTY AND GENERALIZATION IN DEEP LEARNING

To understand the regularizing effect of the individual methods, we first perform a set of experiments
without any data augmentation. The results are shown in Table 1, and the proposed bSAM method
overall performs best with respect to generalization as well as uncertainty quality. More gains are
obtained for larger models.

In Table 2 we show additional results for CIFAR-10, CIFAR-100 and TinyImageNet under basic data
augmentations (random horizontal flipping and random cropping), where bSAM still performs fa-
vorably, though the improvements are less pronounced. Our results reported for SGD on CIFAR-10
in Table 2 (91.68% accuracy) are better than the number (91.25%) reported in the original ResNet-
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Adam (Kingma & Ba, 2014), SWAG (Maddox et al., 2019), and the VOGN method (Osawa et al.,
2019). We also compare with two SAM variant: SAM-SGD and SAM-Adam. Both are obtained by
inserting the perturbed gradients into either SGD or Adam, as suggested in (Foret et al., 2021; Bahri
et al., 2021; Kwon et al., 2021). We compare these methods across three different neural network
architectures and on five datasets of increasing complexity.

The comparison is carried out with respect to four different metrics evaluated on the validation set.
The metrics are generalization accuracy, negative log-likelihood, expected calibration error (Guo
et al., 2017) (using 20 bins) and area-under-ROC curves (Osawa et al., 2019).

For methods which estimate a distribution q(✓) in parameter-space, we report the performance at the
Bayesian model average for the predictive distribution p(y | D) =

R
p(y | D,✓) q(✓) d✓. In our ex-

periments, the above integral is approximated using 32 models drawn from q(✓). All further details
about the individual hyperparameters of the methods and the experimental setup are in App. H.

4.1 ILLUSTRATION ON A TOY EXAMPLE

Fig. 3 compares the uncertainty obtained by bSAM to the exact Bayesian posterior and the
SGD/SAM solutions on a simple Bayesian logistic regression problem. In this simple example,
we can see that the bSAM result is comparable to the exact posterior and how our proposed method
can be used to estimate uncertainty on top of SAM. The details of this experiment are described
in App. G.1.

For the logistic regression problem of Fig. 3, an exact minimization of the relaxed Bayes objective is
also feasible. This allows us to understand the gap induced by the relaxation via the convex lower-
bound. In App. G.2 we compare an exact minimization of the relaxed Bayes objective (11) with the
original Bayesian objective (2) for a full Gaussian distribution.

4.2 UNCERTAINTY AND GENERALIZATION IN DEEP LEARNING

To understand the regularizing effect of the individual methods, we first perform a set of experiments
without any data augmentation. The results are shown in Table 1, and the proposed bSAM method
overall performs best with respect to generalization as well as uncertainty quality. More gains are
obtained for larger models.

In Table 2 we show additional results for CIFAR-10, CIFAR-100 and TinyImageNet under basic data
augmentations (random horizontal flipping and random cropping), where bSAM still performs fa-
vorably, though the improvements are less pronounced. Our results reported for SGD on CIFAR-10
in Table 2 (91.68% accuracy) are better than the number (91.25%) reported in the original ResNet-

7

SAM

Under review as a conference paper at ICLR 2023

(a) Exact Bayes (b) bSAM (c) SAM (point est.) (d) SAM (Laplace)

Figure 3: For a 2D logistic regression, bSAM gives predictive uncertainties that are similar to those
obtained by an exact Bayesian posterior. White areas show uncertain predictive probabilities around
0.5. SAM’s point estimate gives overconfident predictions, while Laplace leads to underconfidence.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical results and show that bSAM brings the best of the two worlds
together. It gives an improved uncertainty estimate similarly to the best Bayesian approaches, but
also improves test accuracy, just like SAM. We compare performance to many methods from the
DL and Bayesian DL literature: SGD, Adam (Kingma & Ba, 2015), SWAG (Maddox et al., 2019),
and VOGN (Osawa et al., 2019). We also compare with two SAM variants: SAM-SGD and SAM-
Adam. Both are obtained by inserting the perturbed gradients into either SGD or Adam, as suggested
in Foret et al. (2021); Bahri et al. (2022); Kwon et al. (2021). We compare these methods across
three different neural network architectures and on five datasets of increasing complexity.

The comparison is carried out with respect to four different metrics evaluated on the valida-
tion set. The metrics are test accuracy, negative log-likelihood (NLL), expected calibration er-
ror (ECE) (Guo et al., 2017) (using 20 bins) and area-under the ROC curves (AUROC) (Os-
awa et al., 2019). For Bayesian methods, we report the performance of the predictive distribu-
tion p(y | D) =

R
p(y | D,✓) q(✓) d✓, which we approximated using an average over 32 models

drawn from q(✓). All further details about hyperparameter settings and the experimental setup are
in App. H.

4.1 ILLUSTRATION ON A TOY EXAMPLE

Fig. 3 compares the predictive probability on a simple Bayesian logistic regression problem (Mur-
phy, 2012, Ch. 8.4). For exact Bayes, we use numerical integration, which is feasible for this toy
2D problem. For the rest, we use diagonal Gaussians. White areas indicate probabilities around
0.5, while red and blue are closer to 0 and 1. We see that the bSAM result is comparable to the
exact posterior and corrects the overconfident predictions of SAM. Performing a Laplace approxi-
mation around the SAM solution leads to underconfident predictions. The posteriors are visualized
in Fig. 5(c) and other details are discussed in App. G.1.

We can also use this toy problem to see the effect of using f vs f⇤⇤ in the Bayesian objective.
In App. G.2 we compare an exact optimization of Eq. 11 to an optimization of the original Bayesian
objective Eq. 2. For both, we use full covariance to avoid the inaccuracies arising due to a diagonal
covariance assumption. We find that the posteriors are very similar for both f and f⇤⇤, indicating
that the gap introduced by the relaxation is also small.

4.2 REAL DATASETS

We first perform a set of experiments without any data augmentation, which helps us to quantify the
improvements obtained by the regularization induced by our Bayesian approach. This is useful in
applications where it is not easy to do data-augmentation (for example, tabular or time series data).
The results are shown in Table 1, and the proposed bSAM method overall performs best with respect
to test accuracy as well as uncertainty metrics. Gains get larger as the models get larger.

In Table 2 we show results with data augmentations (random horizontal flipping and random crop-
ping). We consider CIFAR-10, CIFAR-100 and TinyImageNet, and still find bSAM to perform
favorably, although the margin of improvement is smaller with data augmentation. We note that, for
SGD on CIFAR-10 in Table 2, the accuracy (91.68% accuracy) is slightly better than the 91.25%
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Results on Resnet-20 (200K params) 
and ResNet-18 (11M params) 
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Bayesian SAM is less sensitive to 
hyper-parameters
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The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality 
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