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Information Processing
== Bayes’ Updating



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o



https://www.youtube.com/watch?v=TxobtWAFh8o

Fixing Machine Learning

« Even a small change may need full retraining

— Huge amount of resources only few can afford
(costly & unsustainable) [1,2, 3]

— Difficult to apply in “dynamic” settings (robotics,
epidemiology, climate science etc)

 We need sustainable, transparent, trustworthy Al
— Use reliable building blocks (data, model, metrics)
— Switch to incremental, continual, lifelong learning
« Bayes a solution to do so!

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s



https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s

Information Procession 101

1. Think addition of numbers
2. Addition of Vectors [1]
3. Multiplication of Probabillities

px|y) < p(y|x)p(x)

log p(x|y) = log p(y|x)
+log p(x) + const.

1. https://firmfunda.com/maths/vector-algebra/vector-algebra-addition/vector-addition-first-principles



This Talk

 Value of information
— Good or bad, old or new, here or there
— Bayes’ rule and Posterior uncertainty
* Multiplication through addition
— Exp-family distribution
— Conjugate Bayes
* Information Processing in general
— Projection to exp-family
— Bayesian Learning Rule and Deep learning



Bayes’ Rule

The Value of Information and
Posterior Uncertainty
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Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss 1 ¢ P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.



Example Which is a Better Fit?
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Value of Information: Uncertainty
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A Bayesian Principle

1. Sample 0 ~ p(6) prior
N

2.Score  p(D|0) = | | p(yil fo(x:)) Likelinood
3. Normalize =
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Posterior Likelihood X Prior

 p(D)p(0)
POID) = T D16)p(0)d0

10 50 100

Now, think about the value of information!
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)5



Which is a good classifier?

16



Input 2

Which is a good classifier?

Misclassified by the red
/ line, but not by the blue

What you don’t know
now, can hurt you later
“Uncertainty matters”

17



Bayesian Principles

(1) Keep your options open

p(D1]0)p(0)
| p(D110)p(0)do

(2) Revise with new evidence

_ p(D2|0)p(0]D1)
| p(D210)p(0|D;)do

Similar ideas in sequential/online decision-making
(uncertainty/randomization). Computation is infeasible.

18
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Bayesian Linear Regression (polynomials of degree 15)
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Model Merging
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Conjugate Bayes

Multiplication by addition
Exponential-Family distribution

21



Exponential Family

Natural Sufficient Expectation
parameters Statistics parameters
b }
a(6) o exp [ATT(6)] = E,[T(0)]

N(Olm,S™1) o< exp

1 T
—5(9 —m) S0 — m)]

X exp [(Sm)TQ + Tr (—geeT)]

" Gaussian distribution q(0) := N(0m,571)
Natural parameters A= {Sm,—-5/2}
_ Expectation parameters 1 := {Eq(6),E,(06")}

J

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 22



Bayes and Conjugate Computations [1]

Multiplication of distribution = addition of (natural) params

Bayes rule: posterior o lik X prior
oApost T(0) ¢ AT (0) ¢ pAprior T(0)
log-posterior = log-lik + log-prior
Apost = Alik T Aprior

1. Khan and Lin, Conjugate computation variational inference, AISTATS, 2017.



General Information
Processing

Projection to Exp-Family
Bayesian Learning Rule
For deep learning

24



Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss 1 ¢ P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.



Bayes and Conjugate Computations [1]

Multiplication of distribution = addition of (natural) params
Bayes rule: posterior o lik X prior
oApost T(0) ¢ AT (0) ¢ pAprior T(0)
log-posterior = log-lik 4+ log-prior
Apost = Alik T Aprior
This idea can be generalized through natural-gradients.

Apost = V E [log lik + log-prior]

Natural gradlent Posterlor ‘approximation”

1. Khan and Lin, Conjugate computation variational inference, AISTATS, 2017.



Bayes Rule as (Natural) Gradient
Descent

)\post — )\lik =+ )\prior
Expected log-lik and log-prior are linear in p [1]
E, [log-lik] = A\ Eq[T(0)] = A
Gradient wrt i is simply the natural parameter
VMEQ [log—lik] — )\lik
So Bayes’ rule can be written as (for an arbitrary q)
Apost — V,E,|log-lik 4 log-prior|

As an analogy, think of least-square = 1-step of Newton

1. Khan, Variational-Bayes Made Easy, AABI 2023.



See Appendix A in Khan and Rue, 2021

Bayes Rule as Optimization

p(DI]0)p(H) (
POID) = D16\ p(6)ds (Pl)pE)
= argmin E ) [0(0)] — H(q)
9€P q| Entropy

All distribution Distribution

- ) ~

q

=[E,[¢(0)] + E,[logq(0)] =E, {log 65(9)}
= ¢.(0) < ="V  p(DIh)p(8) x p(6|D)

-

Holds for any loss function (generalized-posterior)

Zellner (1988), Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006) .



The Bayesian Learning Rule

in £(60 vs min K v(0) — H(g
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of q

A d— oV, 0) - H(g) )

_— A

| . |
Old belief  New information = natural gradients

Exploiting posterior’s information geometry to derive existing algorithms
as special instances by approximating q and natural gradients.

1. Khan and Rue, The Bayesian Learning Rule, JMLR, 2023

2. Khan and Lin. "Conjugate-computation variational inference....” Alstats, 2017 .



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

30



BLR for large deep networks

RMSprop/Adam BLR variant
Improved Variational Online Newton (IVON)
g+ V() § « V() where 0 ~ N (m,c?)
h « §° heg-(0—m)/o>
h+ (1= p)h+ ph h (1—p)h+ph +p°(h —h)*/(2(h +9))

0« 0—a(g+om)/(Vh+68) m+m—a(@+om)/(h+9)
0% 1/(N(h+9))

Only tune initial value of h (a scalar)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

4. Shen et al. “Variational Learning is Effective for Large Deep Networks.” Under review (2024) 3



Logistic Regression

Iteration 1

Variational Online
Newton method

- Frequentist (Adam)
== Bayes (VON,mean)
Bayes (samples)

Logistic Regression
l l 1 | l - Minibatch = 5,
° s 2 0 2 4+  Learning rates = (0.01, 0.01)

Input 1

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 3?2



Deep Learning

lteration 1
10 -
5_
o ]
2 o prd
-5 O [
';# —— Adam
f. —— Bayes (VON,mean)
|
-5 0 5
Input 1

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

GPT-2 with Bayes

Better performance and uncertainty at the same cost

—— BLR (IVON)[3]
m— AdamW
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Train step (x1,000)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Shen et al. “Variational Learning is effective for large neural networks.” (Under review) 34



References for Bayes as Optimization

arg min E,0)£(0)] — H(q)

Bayesian statistics

1.Jaynes, Edwin T. "Information theory and statistical mechanics." Physical review (1957)

2. Zellner, A. "Optimal information processing and Bayes's theorem." The American
Statistician (1988)

3. Bissiri, Pier Giovanni, Chris C. Holmes, and Stephen G. Walker. "A general framework for
updating belief distributions." RSS: Series B (Statistical Methodology) (2016)

PAC-Bayes

4. Shawe-Taylor, John, and Robert C. Williamson. "A PAC analysis of a Bayesian
estimator." COLT 1997.

5. Alquier, Pierre. "PAC-Bayesian bounds for randomized empirical risk
minimizers." Mathematical Methods of Statistics 17.4 (2008): 279-304.

Online-learning (Exponential Weight Aggregate)

6. Cesa-Bianchi, Nicolo, and Gabor Lugosi. Prediction, learning, and games. 2006.

Free-energy principle

7. Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)
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Related Frormulations

Evolution strategy *'® g%ig Eq(o) 1€(9)]

1.Ingo Rechenberg, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution (PhD thesis) 1971.

Gaussian Homotopy

2. Mobahi, Hossein, and John W. Fisher lll. "A theoretical analysis of optimization by
Gaussian continuation." Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

Smoothing-based Optimization

3. Leordeanu, Marius, and Martial Hebert. "Smoothing-based optimization." 2008 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2008.

Graduated Optimization

4.Hazan, Elad, Kfir Yehuda Levy, and Shai Shalev-Shwartz. "On graduated optimization for
stochastic non-convex problems." International conference on machine learning. 2016.

Stochastic Search

5.Zhou, Enlu, and Jiagiao Hu. "Gradient-based adaptive stochastic search for non-
differentiable optimization." IEEE Transactions on Automatic Control 59.7 (2014):
1818-1832.
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References for Posterior

Approximations

argmin E, ) [£(0)] — H(q)
o . qe
 Variational inference

1. Hinton, Geoffrey, and Drew Van Camp. "Keeping neural networks simple by minimizing the
description length of the weights." COLT 1993.

2.Jordan, Michael I., et al. "An introduction to variational methods for graphical
models." Machine learning 37.2 (1999): 183-233.

* Entropy-regularized / Maximum-entropy RL

3. Williams, Ronald J., and Jing Peng. "Function optimization using connectionist
reinforcement learning algorithms." Connection Science 3.3 (1991): 241-268.

4. Ziebart, Brian D. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Diss. figshare, 2010. (see chapter 5)

» Parameter-Space Exploration in RL

5. Ruckstiess, Thomas, et al. "Exploring parameter space in reinforcement learning." Paladyn,
Journal of Behavioral Robotics 1.1 (2010): 14-24.

6. Plappert, Matthias, et al. "Parameter space noise for exploration." arXiv preprint
arXiv:1706.01905 (2017)

7..Fortunato, Meire, et al. "Noisy networks for exploration." arXiv preprint
arXiv:1706.10295 (2017).
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inference in non-conjugate models to inferences in conjugate models.” Alstats (2017).
10.Khan and Nielsen. "Fast yet simple natural-gradient descent for variational inference in

complex models." (2018) ISITA.
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