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Here are some important notices about this seminar:

1. Reproduction is prohibited.
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2. Reproducing all or any part of the contents is prohibited without the author's
permission.
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3. This seminar will be recorded and the video will be available on the RIKEN AIP
website later.
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4. If you have any questions or comments, please scroll to the bottom of the page
and click the Q and A tab.
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R Welcome to AIP Open Seminar! o>

AIP Open Seminar Series website
https://aip.riken.jp/event-list/seminars

Schedule

Attendance to the seminar is free of charge, but pre-registration is required from Doorkeeper
to obtain the Zoom access link.

March 17 at 15:00-17:00 JST
Talks by Structured Learning Team (PI: Yoshinobu Kawahara)

March 24 at 15:00-17:00 JST
Talks by Mathematical Science Team (PI: Kenichi Bannai)

March 31 at 15:00 — 17:00 JST
Talks by Computational Learning Theory Team (PI: Kohei Hatano)

April 7 at 15:00 — 17:00 JST
Talks by Deep Learning Theory Team (PI: Taiji Suzuki)



Bayesian Principles for
Learning-Machines

Mohammad Emtiyaz Khan

RIKEN Center for Al Project, Tokyo
http://emtiyaz.github.io
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Al that learn like humans

Learn and adapt quickly throughout their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Bayesian Principles

l Our research

Human learning ;A Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

My current research focuses on reducing this gap!

1. Parisi, German |., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

2. Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)



Approximate Bayesian Inference Team
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bayes.github.io/
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BayeSian (Principles for) Learning'MaChineS

* Uncertainty (Background)
— What you don’t know now, can hurt you later
° Learning (Past work)
— Derive learning-algorithms from Bayes
° Knowledge (Current work)
— Knowledge representation and its transfer
— Memorable experiences (Dharmesh Tailor)
— Continual learning (Emti)
— Meta learning (Pierre Alquier)



Which is a good classifier?

12



Input 2

Which is a good classifier?

Misclassified by the red
/ line, but not by the blue

What you don’t know
now, can hurt you later
“Uncertainty matters”

13



Bayesian Principles

Iteration 1

Estimate a distribution
over parameters
(e.g., Gaussian)

- Frequentist (Adam)
== Bayes (VON, mean)
Bayes (samples)

Logistic Regression

| | | | | | - Minibatch = 5,

-10 -8 6 -4 2 0 2 4  Learning rates = (0.01, 0.01)
Input 1

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 14



Bayesian Principles

lteration 1
10 -
5-
o Pm
2 o ek
-5 O a
'1*' —— Adam
f- —— Bayes
—5 0 5

Input 1

This can be used to
guantify the uncertainty
of deep networks

Get the code from https://
github.com/team-approx-
bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Image Segmentation

Uncertainty

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Reduce Overfitting

Standard DL Bayesian DL

Left figure is cross-validation. Right figure is“Marginal Likelihoods”.
17



BayeSian (Principles for) Learning'MaChineS

* Learning (Past work)
— Derive learning-algorithms from Bayes



Bayesian Principles

min £(6) vs min E g [¢(0)] — H(g) Entropy
0 C]EQ '\ : : :
Posterior approximation

1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)
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0

Bayesian Principles

min £(6) vs Hélél E,0)[€(0)] — H(q) Entropy
q

Posterior approximation

Standard deviation: 0.00

E(loss)

Common in

Standard Deviation

L | A 2
-4 -5 =3

. * Search
Inference
Optimization
Online learning
Reinforcement
learning

-0.18:

-0.36°

‘Mean

1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)
2. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)
3. Khan et al. "Variational adaptive-Newton method for explorative learning." arXiv (2017).
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Bayesian Learning Rule

min £(6) vs min E ) [(0)] — H(q)
Exponential-family Approx.

Deep Learning algo: § « 6 — pH, "V £(6)
Bayes learning rule: A <~ A — pV, (E,[£(0)] — H(q))

| t ™~ Natural Gradient
Natural and Expectation parameters of

an exponential family distribution g

By changing Q, we can recover DL algorithms (and more)

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).

2. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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https://emtiyaz.github.io/papers/learning_from_bayes.pdf

Gradient Descent from Bayes

Gradient descent: 9 « 9 — oVl (0)
Bayes Learn Rule: m < m — pV,,£(m)

“Global” to “local” _
(delta approx) m<—m Pvaq [6(9)]

CEJU0)] = Lm) | X A= pV,, (B, [0(0)] — H(q))
Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m

_Entropy H(q) := log(2m)/2 )

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 22



https://emtiyaz.github.io/papers/learning_from_bayes.pdf

Bayesian learning rule: X < X — oV, (E,[¢(0)] — H(q))

Learning Algorithm Posterior Approx. Algorithmic Approx. Sec.
Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta approx. 1.4

Newton’s method Gaussian “ 14

Multimodel optimization ew)y Mixture of Gaussians “ 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent — Gaussian (fixed cov.) Delta approx., Stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) |Delta approx., Stochastic approx., | 4.2,
Hessian approx., Square-root scal- | 4.3
ing, Slow-moving scale vectors

Dropout Mixture of Gaussians Delta approx., Stochastic approx., 4.4
Responsibility approx.

STE Bernoulli Delta approx., Stochastic approx. 4.6

Online Gauss-Newton (OGN) | Gaussian (diagonal cov.) | Gauss-Newton Hessian approx. in| 4.5

(New) Adam & no square-root scaling

Variational OGN (new) “ Remove Delta approx. from OGN | 4.5

Bayesian Binary NN (New) ‘ Remove Delta approx. from STE 4.6

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate p = 1 5.1

Laplace’s method Gaussian Delta approx. 5.2

Expectation-Maximization Exp-Family + Gaussian Delta approx. for the parameters 5.3

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local rate pr =1 5.4

VMP “ Set learning rate p, = 1 5.4

Non-Conjugate VMP “ ‘ 5.4

Non-Conjugate VI (vew) Mixture of Exp-family None 5.5

Khan and Rue. “Learning-
Algorithms from Bayesian
Principles” (2020)

We can compute
uncertainty using a
variant of Adam.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Ilteration 1
70F
10-
> 60}
5] o
©
o~ 8 50+
2 S
0_
= § 40|
©
_5 = g
;" —— Adam S 30
-'_ —— VOGN
5 5 5 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)z5



Learning-Algorithms from Bayesian Principles

Mohammad Emtiyaz Khan
RIKEN center for Advanced Intelligence Project
Tokyo, Japan

Havard Rue
CEMSE Division

King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Version of November 3, 2020
DRAFT ONLY

Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, Adam, and Dropout. The key
idea is to estimate posterior approximations using the Bayesian learning rule. Different approximations
then result in different algorithms and further algorithmic approximations give rise to variants of
those algorithms. Our work shows that Bayesian principles not only unify, generalize, and improve
existing learning-algorithms, but also help us design new ones.

Available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf

1. Olivier et al. “Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles”,
JMLR (2017).
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NeurlPS 2019

Tutorial
#NeurlPS 2019

’ *D 1 . 40 : [l | ° Views 151 807  Presentations 263  Followers 200

Human Learning at
the age of 6 months.

1o

L
' pad
FROM SYSTEM 1 DEEP NEURIPS WORKSHOP ON LRPO LA
LEARNING TO SYSTEM 2 DEEP MACHINE LEARNING FOR
LEARNING CREATIVITY AND DESIGN 3.0
2

From System 1 Deep Learning to System2  NeurlPS Workshop on Machine Learning
Deep Learning for Creativity and Design...

by Yoshua Bengio by Aaron Hertzmann, Adam Roberts, ...
17,953 views - Dec 11,2019 9,654 views - Dec 14, 2019

DEEP LEARNING WITH e EFFICIENT PROCESSING OF

BAYESIAN PRINCIPLES DEEP NEURAL NETWORK: FROM
ALGORITHMS TO HARDWARE
ARCHITECTURES

[ ] [
Deep Learning with
AL INFORMATION B ayes i a n P ri n c i p I es Deep Learning with Bayesian Principles ﬁf:ﬂz:;zl;:zﬁisl?gi?;gziz.Ifeural

by Mohammad Emtiyaz Khan
by Vivienne Sze

by Mohammad Emtiyaz Khan - Dec 9, 2010 - [l kil B




Past and New Work

Natural Gradient Variational Inference

1.Khan and Lin. "Conjugate-computation variational inference:
Converting variational inference in non-conjugate models to
inferences in conjugate models.” Alstats (2017).

2.Khan and Nielsen. "Fast yet simple natural-gradient descent for
variational inference in complex models." (2018) ISITA.

Mixture of Exponential family

3.Lin et al. "Fast and Simple Natural-Gradient Variational Inference with
Mixture of Exponential-family Approximations,” ICML (2019).

Generalization of natural gradients

4.Lin et al. “Handling the Positive-Definite Constraint in the Bayesian
Learning Rule”, ICML (2020)

5. Lin et al. “Tractable structured natural gradient descent using local
parameterizations”, under review, (2021)

Gaussian approx <=> Newton-variants

28



Gaussian Approximation and DL

1.Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in
Adam." ICML (2018).

2. Mishkin et al. “SLANG: Fast Structured Covariance Approximations for Bayesian Deep
Learning with Natural Gradient” NeurlPS (2018).

3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

Yarin Gal Akash Srivastava
Voot Tangkaratt (UOxford)

(Postdoc, RIKEN-AIP) (UEdinburgh)
—

§

Anirudh Jain  Runa Eschenhagen Siddharth Rich Turner

i Rio Yok
ﬁi‘;}'ﬁ;?:i‘;‘vf (T(;EVOOT;’E?‘) (Intern from (Intern from Swaroop  (UCambridge)

[IT-ISM, India) U Osnabruck) (UCambridge)
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Extensions

* Binary Neural Networks (Bernoulli approx)

1.Meng, et al. "Training Binary Neural Networks using the Bayesian Learning
Rule." ICML (2020).

* (Gaussian Process
2.Chang et al. “Fast Variational Learning in State-Space GP Models”, MLSP (2020)

— For sparse GPs, BLR is a generalization of [1]

Roman Xiangming
Bachmann Meng
(Intern from EPFL) (RIKEN-AIP)

Paul Chang W. J. Wilkinson Arno Solin
(Aalto University) (Aalto University) (Aalto University)

1. Hensman et al. “Gaussian Process for Big Data”, UAI (2013)
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BayeSian (Principles for) Learning'MaChineS

* Knowledge (Current work)
— Knowledge representation and its transfer
— Memorable experiences (Dharmesh Tailor, 20 mins)



Relevance of Data Examples

Which examples are most relevant for the
classifier? Red circle vs Blue circle.
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Model view vs Data view

Bayes “automatically” defines data-relevance

A P Data

I E view

e _ e _'_ a ." (Very
L o O @ °*| much

. o o°go ° “. % like
: So "s | SVMs)

. " m = o/ . o
AR O%Q S

(By Roman Bachmann)



BayeSian (Principles for) Learning'MaChines

— Continual learning (Emti)



Continual Learning with Bayes

- -
(&5
R e
PineBo Pan Siddharth Runa Eschenhagen .
(Inter%\ trom UT Swaroop (Intern from Rich Turner
Sydney) (University of University of (University of
ydney Cambridge) Osnabruck) Cambridge)
Alexander Immer Ehsan Abedi

Maciej Korzepa
(Intern from DTU)

(Intern from EPFL) (Intern from EPFL)

1. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Continual Learning
/X

Update Deep
Network

Select a random
’, subset of images
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Continual Learning: past classes never revisited

Observe Update Observe Update
categories Deep categories Deep
Network : : Network
---p| Dogvs.Cat |__, , > Lion vs. Tiger 5 , —

' ] ) 0
S > > =

Standard training leads to catastrophic forgetting.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the
national academy of sciences 114.13 (2017): 3521-3526.



Existing Continual Learning Methods

« Weight regularization
— Elastic-weight consolidation (EWC) [1]
— Structured Laplace [2]
— Synaptic Intelligence (Sl) [3]
— Variational Continual learning (VCL) [4]
« Memory-based
— Learning without forgetting [5] (and many more..)
— Gradient Episodic Memory [6] (and many more..)
« Functional Regularization [7]

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017).

2. Ritter et al. "Online structured laplace ... for overcoming catastrophic forgetting." NeurlPs. 2018.

3. Zenke et al. "Continual learning through synaptic intelligence." ICML, 2017.

4. Nguyen, Cuong V., et al. "Variational continual learning." arXiv preprint arXiv:1710.10628 (2017).

5. Li and Hoem, “Learning without forgetting”, IEEE PAMI (2017)

6. Lopez-Paz, Ronzato, “Gradient episodic memory for continual learning”, NeurlPs (2017)

7. Titsias et al., “Functional Regularisation for Continual Learning with Gaussian Processes”, ICLR (2020)
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Continual Learning CIFAR-100

Bayesian Learning Rule improves the state-of-the-art,
but there is room for improvement.

Eo.m % 8 .8 o VCL
=0 Q
0.65 O EWCy
O Sli

Taskl Task?2 Task3 Task4 Taskb Task6

1. Nguyen et al. “Variational Continual Learning.” ICLR (2018).

2. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017 38



Continual Learning with Bayes

O
0% O 1. Identify Memorable
g@?ﬁo past examples
— Use Bayesian
Learning Rule
2. Regularize network
outputs
— Make sure the

| ——  predictions don't
----------- change too much

10

1. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 39



Functional Regularization of
Memorable Past (FROMP)

Regularize the function outputs.
Simply adds an additional term in Adam.

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 40



From Neural Net to Gaussian Process
Bayes learning rule: \ «— X\ — oV, (E,[¢(0)] — H(q))

Optimal natural parameters = natural gradients [1]
A = VB [E(0)]

s )
= ZE [Voli(0)] = J.] v, < — Extract dual variables
/ (at«, A+) from natural
ZIE )] + I~ J AT+ +1 gradients!
\ J

DNN2GP [2] uses this to express both the “iterates”
and “solutions” as Gaussian process (also see [3])

1.Khan and Nielsen. "Fast yet simple natural-gradient descent for variational inference in complex
models." ISITA, 2018

2. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurlPS, 2019

3. Khan et al. “Fast Dual variational inference fo non-conjugate LGMs”, ICML, 2013 41



Continual Learning with GPs

10° o, Weights Reqularization [1

g@%@ g g [1]

(0 = Op1) " X0 = O,)
Functional Regularization [2]

KL(p(@)||q0)) ~ KL(p(f)|1q(f))

| | T
f (Xm) _fold(Xm) Kold(Xm’ Xm)_l f (Xm) _fold(Xm)

Upcoming result (coming soon): Such regularizers
enable optimal knowledge transfer!!!

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 42



Continual Learning: Improving Bayes

FROMP uses a GP prior in “function-space” over the
“memorable pasts” and improves the performance.

0.80 Best Possible

(batch training)
O FROMP

Q
VOGN -+
0.70 8 ___9___ @) o VCL

(-
3
Qo
O
x>
o

Validation accuracy

O EWCy
Q Sl
————— Separate
Taskl  Task2  Task3  Task4  Taskb  Task6 Training

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 43
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FROMP results (MNIST)

Method Permuted Split
DLP [32] 2% 61.2%
EWC [18] 4% 63.1%
ST [37] 6% 98.9%
Improved VCL [33] 934+ 1% 98.4 4+ 0.4%
+ random Coreset 94.6 +0.3% 98.2 4+ 0.4%
[1] FRCL-RND [34] 94.24+0.1% 97.1 4+ 0.7%
FRCL-TR [34] 94.3 £ 0.2% 97.8 £0.7%
FRORP-L» 87.9+0.7% 98.5+0.2%
FROMP-L- 94.6 £0.1% 98.7 £ 0.1%
FRORP 94.6 = 0.1% 99.0 £ 0.1%
FROMP 94.94+0.1% 99.0 £ 0.1%

(a) MNIST comparisons: for Permuted, we use 200 examples
as memorable/coreset/inducing points. For Split, we use 40.

1. Titsias et al. Functional Regularisation for Continual Learning with Gaussian Processes, ICLR (2020)




BayeSian (Principles for) Learning'MaChineS

* Uncertainty (Background)
— What you don’t know now, can hurt you later
° Learning (Past work)
— Derive learning-algorithms from Bayes
° Knowledge (Current work)
— Knowledge representation and its transfer
— Memorable experiences (Dharmesh Tailor)
— Continual learning (Emti)
— Meta learning (Pierre Alquier)



Current Work

Continual Active
Learning learning

Online/Meta
Bayes|an learning

Principles

(Explore-exploit) _
Reinforcement

Learning

Federated
learning
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How to design Al that learn like us?

* Uncertainty -> Learning -> Knowledge

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q83: What do we need to know? (action & exploration)

* Posterior approximation is the key
— (Q1) Models == representation of the world
— (Q2) Posterior approximations == representation of the model

— (Q3) The Bayes-dual will enable Knowledge representation,
transfer, and collection.
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Approximate Bayesian Inference Team

https://team-approx-
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