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Welcome to AIP Open Seminar!
Here are some important notices about this seminar:
1. Reproduction is prohibited.

複製を禁止します

2. Reproducing all or any part of the contents is prohibited without the author's 
permission.
所有者の許可なくコンテンツまたはその一部を転載することを禁じます

3. This seminar will be recorded and the video will be available on the RIKEN AIP 
website later.
本セミナーは録画いたします。後日、RIKEN AIPウエブサイトに掲載予定です

4. If you have any questions or comments, please scroll to the bottom of the page 
and click the Q and A tab.

You can put questions or comments in the box.
質問は画面下部のQ&A機能をご利用ください
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Q and A session

If you have any questions or comments, Please
scroll to the bottom of the page and click the
Q and A tab.

(You can put comments or questions in the 
box.)

質問は、画面下部の「Q and A 機能」をご利用く
ださい。



3

Welcome to AIP Open Seminar!

AIP Open Seminar Series website
https://aip.riken.jp/event-list/seminars/

Schedule
Attendance to the seminar is free of charge, but pre-registration is required from Doorkeeper 
to obtain the Zoom access link.

• March 17 at 15:00-17:00 JST
Talks by Structured Learning Team (PI: Yoshinobu Kawahara) 

• March 24 at 15:00-17:00 JST
Talks by Mathematical Science Team (PI: Kenichi Bannai) 

• March 31 at 15:00 – 17:00 JST
Talks by Computational Learning Theory Team (PI: Kohei Hatano)

• April 7 at 15:00 – 17:00 JST
Talks by Deep Learning Theory Team (PI: Taiji Suzuki)



Bayesian Principles for 
Learning-Machines

Mohammad Emtiyaz Khan
RIKEN Center for AI Project, Tokyo

http://emtiyaz.github.io
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AI that learn like humans

Learn and adapt quickly throughout their lives
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Human Learning at 
the age of 6 months.
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Converged at the 
age of 12 months
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Transfer 
skills

at the age 
of 14 

months



Human learning           Deep learning
Life-long learning from 
small chunks of data in 
a non-stationary world
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Bulk learning from a 
large amount of data in 

a stationary world

1. Parisi, German I., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

My current research focuses on reducing this gap!

2. Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual 
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)

Bayesian Principles

Our research
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https://team-approx-
bayes.github.io/

Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/
https://team-approx-bayes.github.io/


Bayesian (Principles for) Learning-Machines

• Uncertainty (Background)

– What you don’t know now, can hurt you later
• Learning (Past work)

– Derive learning-algorithms from Bayes
• Knowledge (Current work)

– Knowledge representation and its transfer
– Memorable experiences (Dharmesh Tailor)
– Continual learning (Emti)
– Meta learning (Pierre Alquier)
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Which is a good classifier?
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Which is a good classifier?
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What you don’t know 
now, can hurt you later
“Uncertainty matters”

Misclassified by the red 
line, but not by the blue



Bayesian Principles
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Logistic Regression
Minibatch = 5,
Learning rates = (0.01, 0.01)

 Frequentist (Adam)
Bayes (VON, mean)
Bayes (samples)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Estimate a distribution 
over parameters 
(e.g., Gaussian)



Bayesian Principles
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

Bayes
Get the code from https://
github.com/team-approx-
bayes/dl-with-bayes

This can be used to 
quantify the uncertainty 
of deep networks
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Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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Image Segmentation
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Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for 
scene geometry and semantics." CVPR. 2018.
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Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

our method overfit
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Step 1: Optimize Marginal-Likelihood wrt. hyperparameters Step 2: Compare marginal likelihood of models

steps steps
MargLik = �117
train accuracy: 92%
test accuracy:89%

MargLik = �165
train accuracy:99%
test accuracy: 86%

Figure 2: Proposed method for model selection using the marginal likelihood. In Step 1, we apply our online algorithm
(Alg. 1) to optimize the marginal likelihood estimate (Eq. 3) with respect to the differentiable hyperparameters (here: prior
precision �i per layer and softmax temperature T ). In Step 2, we compare the resulting model (left) to an overfitting model
(right) with higher training accuracy but lower test accuracy; both models have the same architecture. The Laplace-GGN
marginal likelihood estimate log q(D|M) correctly identifies the model that generalizes better. See Sec. 4.1 for details.

Note that the parameters ✓⇤ in Eq. 3 are assumed to be the
MAP estimate, however this is not true during training at
some ✓. We also try another method derived from a local
integration in App. A.1 instead, but empirically this does not
give good results and is more expensive. Theoretically, joint
optimization of ✓ and M

@ could be achieved with second-
order optimization methods which resemble a step of local
integration. We discuss the choice of hyperparameters of
Alg. 1 in Sec. 3.4.

3.2. Step 2: Model selection after training

To choose between two discrete model alternatives, such
as different architectures, we compare their marginal likeli-
hood estimate after training. This step is a basic hypothesis
test where we compare two models M and M

0 and choose
the more likely model given the data according to the likeli-
hood ratio p(D|M)/p(D|M

0), which is the most powerful
statistical test for this purpose (Neyman & Pearson, 1933).
In terms of the marginal likelihood, we only need to choose
the model with a higher value (cf. Fig. 1 and Fig. 2 (right)).

3.3. Scalable Laplace approximations

Efficient determinant computation. Scalable marginal
likelihood estimation (Eq. 3) relies on an efficient computa-
tion of the determinant of the GGN or EF approximation of
the Hessian (Eqs. 4 and 5). When N is small, we can use
the Woodbury matrix identity to rewrite the determinant of
the Hessian (a P ⇥ P matrix) in terms of determinants of
matrices whose size only depends on the number of data
points N and outputs (e.g., classes) C instead:
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The determinants |P✓| (though still P ⇥ P ) and |L✓| are
usually cheap to compute as the prior p(✓) often factorizes
across parameters and L✓ is block-diagonal. When neither
O(N3) nor O(P 3) are tractable we consider the following
structured GGN approximations of different sparsities.

Kronecker-factored Laplace. The Kronecker-factored
(KFAC) GGN approximation is based on a block-diagonal
approximation to H

GGN
✓ and is specified by a Kronecker

product per layer (Martens & Grosse, 2015; Botev et al.,
2017). The GGN of the l-th layer of the neural network
is approximated as [JT

✓L✓J✓]l ⇡ Ql ⌦ Wl where Ql is
computed from the gradient by backpropagation and Wl de-
pends on the input to the l-th layer. Wl and Ql are quadratic
in the l-th layer’s input and output size, respectively. Let
q

(l)
2 RDl and w

(l)
2 RD0

l be the eigenvalues of Ql and
Wl, respectively. If the prior Hessian P✓ is isotropic per
layer, that is, [P✓]l = p(l)

✓ Il, then we can compute the deter-
minant for the Laplace-GGN efficiently as

|H
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In contrast to the typical use of Kronecker-factored approx-
imations in optimization (Martens & Grosse, 2015; Botev
et al., 2017) and approximate inference (Ritter et al., 2018;
Zhang et al., 2018), we avoid damping which would distort
the Laplace-GGN (cf. App. A.3 for discussion and abla-
tion experiment). Computationally, the Kronecker-factored
Laplace-GGN is cheaper than the full Laplace-GGN because
we only need to decompose matrices that are quadratic in
the number of neurons per layer. This number typically does
not exceed a few thousand.

Diagonal Laplace relies on a simple diagonal form of
GGN or EF which allows cheap computation of the determi-
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Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
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Step 1: Optimize Marginal-Likelihood wrt. hyperparameters Step 2: Compare marginal likelihood of models

steps steps
MargLik = �117
train accuracy: 92%
test accuracy:89%

MargLik = �165
train accuracy:99%
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Figure 2: Proposed method for model selection using the marginal likelihood. In Step 1, we apply our online algorithm
(Alg. 1) to optimize the marginal likelihood estimate (Eq. 3) with respect to the differentiable hyperparameters (here: prior
precision �i per layer and softmax temperature T ). In Step 2, we compare the resulting model (left) to an overfitting model
(right) with higher training accuracy but lower test accuracy; both models have the same architecture. The Laplace-GGN
marginal likelihood estimate log q(D|M) correctly identifies the model that generalizes better. See Sec. 4.1 for details.

Note that the parameters ✓⇤ in Eq. 3 are assumed to be the
MAP estimate, however this is not true during training at
some ✓. We also try another method derived from a local
integration in App. A.1 instead, but empirically this does not
give good results and is more expensive. Theoretically, joint
optimization of ✓ and M

@ could be achieved with second-
order optimization methods which resemble a step of local
integration. We discuss the choice of hyperparameters of
Alg. 1 in Sec. 3.4.

3.2. Step 2: Model selection after training

To choose between two discrete model alternatives, such
as different architectures, we compare their marginal likeli-
hood estimate after training. This step is a basic hypothesis
test where we compare two models M and M

0 and choose
the more likely model given the data according to the likeli-
hood ratio p(D|M)/p(D|M

0), which is the most powerful
statistical test for this purpose (Neyman & Pearson, 1933).
In terms of the marginal likelihood, we only need to choose
the model with a higher value (cf. Fig. 1 and Fig. 2 (right)).

3.3. Scalable Laplace approximations

Efficient determinant computation. Scalable marginal
likelihood estimation (Eq. 3) relies on an efficient computa-
tion of the determinant of the GGN or EF approximation of
the Hessian (Eqs. 4 and 5). When N is small, we can use
the Woodbury matrix identity to rewrite the determinant of
the Hessian (a P ⇥ P matrix) in terms of determinants of
matrices whose size only depends on the number of data
points N and outputs (e.g., classes) C instead:
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The determinants |P✓| (though still P ⇥ P ) and |L✓| are
usually cheap to compute as the prior p(✓) often factorizes
across parameters and L✓ is block-diagonal. When neither
O(N3) nor O(P 3) are tractable we consider the following
structured GGN approximations of different sparsities.

Kronecker-factored Laplace. The Kronecker-factored
(KFAC) GGN approximation is based on a block-diagonal
approximation to H

GGN
✓ and is specified by a Kronecker

product per layer (Martens & Grosse, 2015; Botev et al.,
2017). The GGN of the l-th layer of the neural network
is approximated as [JT

✓L✓J✓]l ⇡ Ql ⌦ Wl where Ql is
computed from the gradient by backpropagation and Wl de-
pends on the input to the l-th layer. Wl and Ql are quadratic
in the l-th layer’s input and output size, respectively. Let
q

(l)
2 RDl and w

(l)
2 RD0

l be the eigenvalues of Ql and
Wl, respectively. If the prior Hessian P✓ is isotropic per
layer, that is, [P✓]l = p(l)

✓ Il, then we can compute the deter-
minant for the Laplace-GGN efficiently as
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✓ | ⇡ |H

KFAC
✓ | =

Y

l

Y

ij

q
(l)
i w

(l)
j + p(l)
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In contrast to the typical use of Kronecker-factored approx-
imations in optimization (Martens & Grosse, 2015; Botev
et al., 2017) and approximate inference (Ritter et al., 2018;
Zhang et al., 2018), we avoid damping which would distort
the Laplace-GGN (cf. App. A.3 for discussion and abla-
tion experiment). Computationally, the Kronecker-factored
Laplace-GGN is cheaper than the full Laplace-GGN because
we only need to decompose matrices that are quadratic in
the number of neurons per layer. This number typically does
not exceed a few thousand.

Diagonal Laplace relies on a simple diagonal form of
GGN or EF which allows cheap computation of the determi-
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Left figure is cross-validation. Right figure is“Marginal Likelihoods”.
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Bayes learning rule:

Natural and Expectation parameters of 
an exponential family distribution q
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Derived by choosing Gaussian with fixed covariance
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Khan and Rue. “Learning-
Algorithms from Bayesian 
Principles” (2020)

Work in progress 
(draft available at https://
emtiyaz.github.io/papers/
learning_from_bayes.pdf)

We can compute 
uncertainty using a 
variant of Adam.

Table 1: A summary of learning algorithms derived from BLR. For each algorithm, we choose a posterior
approximation and make a few algorithmic choices and/or approximations to the gradient rµEqt(✓)[·]. We
also derive some new extensions of existing algorithms (marked with “(New)”). Details on abrreviations:
cov. ! covariance, STE ! Straight-Through-Estimator, VI ! Variational Inference, VMP ! Variational
Message Passing.

Learning Algorithm Posterior Approx. Algorithmic Approx. Sec.

Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta approx. 1.4
Newton’s method Gaussian —–“—– 1.4
Multimodel optimization (New) Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta approx., Stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta approx., Stochastic approx.,

Hessian approx., Square-root scal-
ing, Slow-moving scale vectors

4.2,
4.3

Dropout Mixture of Gaussians Delta approx., Stochastic approx.,
Responsibility approx.

4.4

STE Bernoulli Delta approx., Stochastic approx. 4.6
Online Gauss-Newton (OGN)
(New)

Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.5

Variational OGN (New) —–“—– Remove Delta approx. from OGN 4.5
Bayesian Binary NN (New) —–“—– Remove Delta approx. from STE 4.6

Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate ⇢t = 1 5.1
Laplace’s method Gaussian Delta approx. 5.2
Expectation-Maximization Exp-Family + Gaussian Delta approx. for the parameters 5.3
Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local rate ⇢t = 1 5.4
VMP —–“—– Set learning rate ⇢t = 1 5.4
Non-Conjugate VMP —–“—– —–“—– 5.4
Non-Conjugate VI (New) Mixture of Exp-family None 5.5

2 Bayesian Learning Rule

This section contains two derivations of the BLR. First, we interpret it as a natral-gradient descent
using a second order expansion of the KLD, which strengthen the intuition about the BLR. Secondly, we
do a more formal derivation using a mirror-descent algorithm leveraging the connection to information
geometry and where we can bypass the need for doing the second order approximation of the KLD.

5

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

Code available at https://github.com/team-approx-bayes/dl-with-bayesFigure 1: Comparing VOGN [22], a natural-gradient VI method, to Adam and SGD, training ResNet-
18 on ImageNet. The two left plots show that VOGN and Adam have similar convergence behaviour
and achieve similar performance in about the same number of epochs. VOGN achieves 67.38% on
validation compared to 66.39% by Adam and 67.79% by SGD. Run-time of VOGN is 76 seconds per
epoch compared to 44 seconds for Adam and SGD. The rightmost figure shows the calibration curve.
VOGN gives calibrated predictive probabilities (the diagonal represents perfect calibration).

We demonstrate practical training of deep networks by using recently proposed natural-gradient VI38

methods. These methods resemble the Adam optimiser, enabling us to leveraging existing techniques39

for initialisation, momentum, batch normalisation, data augmentation, and distributed training. As a40

result, we obtain similar performance in about the same number of epochs as Adam when training41

many popular deep networks (e.g., LeNet, AlexNet, ResNet) on datasets such as CIFAR-10 and42

ImageNet. See Fig. 1 for Imagenet. The results show that, despite using an approximate posterior, the43

training methods preserve the benefits of Bayesian principles. Compared to standard deep-learning44

methods, the predictive probabilities are well-calibrated and uncertainties on out-of-distribution45

inputs are improved. Our work shows that practical deep learning is possible with Bayesian methods46

and aims to support further research in this area.47

Related work. Previous VI methods, notably by Graves [15] and Blundell et al. [4], require signifi-48

cant implementation and tuning effort to perform well, e.g., on convolution neural networks (CNN).49

Slow convergence is found to be problematic for sequential problems [43]. There appears to be no50

reported results with complex networks on large problems, such as ImageNet. Our work solves these51

issues by borrowing deep-learning techniques and applying them to natural-gradient VI [22, 51].52

In their paper, Zhang et al. [51] also employed data augmentation and batch normalisation for a53

natural-gradient method called Noisy K-FAC (see Appendix A) and showed results on VGG on54

CIFAR-10. However, a mean-field method called noisy Adam was found to be unstable with batch55

normalisation. In contrast, we show that a similar method, called Variatonal Online Gauss-Newton56

(VOGN), proposed by Khan et al. [22], works well with such techniques. We show results for57

distributed training with noisy K-FAC on Imagenet, but do not provide extensive comparisons. Many58

of our techniques can be used to speed-up noisy K-FAC too, which is promising.59

Many other approaches have recently been proposed to compute posterior approximations by training60

deterministic networks [44, 36, 37]. Similarly to MC-dropout, the posterior approximation is not61

flexible and it is difficult to improve the accuracy of the posterior approximations. On the other hand,62

VI offers a much more flexible alternative to apply Bayesian principles to deep learning.63

2 Deep Learning with Bayesian Principles and Its Challenges64

The success of deep learning is partly due to the availability of scalable and practical methods for65

training deep neural networks (DNNs). Network training is formulated as an optimisation problem66

where a loss between the data and the DNN’s predictions is minimised. For example, in a supervised67

learning task with a dataset D of N inputs xi and corresponding outputs yi of length K, we minimise68

a loss of the following form: ¯̀(w) + �w
>
w, where ¯̀(w) := 1

N

P
i `(yi, fw(xi)), fw(x) 2 RK

69

denotes the DNN outputs with weights w, `(y, ŷ) denotes a differentiable loss function between an70

2

VOGN: A modification of Adam but match the 
performance on ImageNet

https://github.com/team-approx-bayes/dl-with-bayes
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(entropy of
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Available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf
1. Olivier et al. “Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles”, 

JMLR (2017).
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Past and New Work

• Natural Gradient Variational Inference
1. Khan and Lin. "Conjugate-computation variational inference: 

Converting variational inference in non-conjugate models to 
inferences in conjugate models.” AIstats (2017).

2. Khan and Nielsen. "Fast yet simple natural-gradient descent for 
variational inference in complex models." (2018) ISITA.

• Mixture of Exponential family
3. Lin et al. "Fast and Simple Natural-Gradient Variational Inference with 

Mixture of Exponential-family Approximations,” ICML (2019).

• Generalization of natural gradients
4. Lin et al. “Handling the Positive-Definite Constraint in the Bayesian 

Learning Rule”, ICML (2020)
5. Lin et al. “Tractable structured natural gradient descent using local 

parameterizations”, under review, (2021)

• Gaussian approx <=> Newton-variants
28
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Gaussian Approximation and DL
1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in 

Adam." ICML (2018).
2. Mishkin et al. “SLANG: Fast Structured Covariance Approximations for Bayesian Deep 

Learning with Natural Gradient” NeurIPS (2018).
3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).
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Extensions
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• Binary Neural Networks (Bernoulli approx)
1. Meng, et al. "Training Binary Neural Networks using the Bayesian Learning 

Rule." ICML (2020).

• Gaussian Process
2. Chang et al. “Fast Variational Learning in State-Space GP Models”, MLSP (2020)

– For sparse GPs, BLR is a generalization of [1]

1. Hensman et al. “Gaussian Process for Big Data”, UAI (2013)



Bayesian (Principles for) Learning-Machines

• Uncertainty (Background, 10 mins)
– What you don’t know now, can hurt you later

• Learning (Past work, 20 mins)
– Derive learning-algorithms from Bayes

• Knowledge (Current work)
– Knowledge representation and its transfer
– Memorable experiences (Dharmesh Tailor, 20 mins)
– Continual learning (Emti, 15 mins)
– Meta learning (Pierre Alquier, 30 mins)

31



Relevance of Data Examples

32

Which examples are most relevant for the 
classifier? Red circle vs Blue circle.



Model view vs Data view
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Model
view
Data
view
(Very 
much 
like 

SVMs)

Bayes “automatically” defines data-relevance

(By Roman Bachmann)



Bayesian (Principles for) Learning-Machines

• Uncertainty (Background)

– What you don’t know now, can hurt you later
• Learning (Past work)

– Derive learning-algorithms from Bayes
• Knowledge (Current work)

– Knowledge representation and its transfer
– Memorable experiences (Dharmesh Tailor)
– Continual learning (Emti)
– Meta learning (Pierre Alquier)
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Continual Learning with Bayes
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1. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurIPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020



Continual Learning
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Update Deep  
Network Select a random  

subset of images

Observe 
categories

Dog vs. Cat Lion vs. Tiger 

Update 
Deep  

Network 

Observe 
categories

Update 
Deep  

Network 

Standard 
Deep 
Learning

Continual Learning: past classes never revisited

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the 
national academy of sciences 114.13 (2017): 3521-3526.

Standard training leads to catastrophic forgetting.



Existing Continual Learning Methods
• Weight regularization

– Elastic-weight consolidation (EWC) [1]
–Structured Laplace [2]
– Synaptic Intelligence (SI) [3]
– Variational Continual learning (VCL) [4]

• Memory-based
– Learning without forgetting [5] (and many more..)
–Gradient Episodic Memory [6] (and many more..)

• Functional Regularization [7]

37

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017).
2. Ritter et al. "Online structured laplace … for overcoming catastrophic forgetting." NeurIPs. 2018.
3. Zenke et al. "Continual learning through synaptic intelligence." ICML, 2017.
4. Nguyen, Cuong V., et al. "Variational continual learning." arXiv preprint arXiv:1710.10628 (2017).
5. Li and Hoem, “Learning without forgetting”, IEEE PAMI (2017)
6. Lopez-Paz, Ronzato, “Gradient episodic memory for continual learning”, NeurIPs (2017)
7. Titsias et al., “Functional Regularisation for Continual Learning with Gaussian Processes”, ICLR (2020)



Continual Learning CIFAR-100
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1. Nguyen et al. “Variational Continual Learning.” ICLR (2018).
2. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
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VOGN + 
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Best Possible
(batch training)

Bayesian Learning Rule improves the state-of-the-art,
 but there is room for improvement.



1. Identify Memorable 
past examples
– Use Bayesian 

Learning Rule 
2. Regularize network 

outputs
–Make sure the 

predictions don’t 
change too much

Continual Learning with Bayes
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1. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurIPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020



Functional Regularization of 
Memorable Past (FROMP)

40

Task 1

Task 2
Task 3

Regularize the function outputs.
Simply adds an additional term in Adam.

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020



From Neural Net to Gaussian Process

41

1. Khan and Nielsen. "Fast yet simple natural-gradient descent for variational inference in complex 
models." ISITA, 2018

2. Khan et al. “Approximate Inference Turns Deep Networks into Gaussian Process”, NeurIPS, 2019
3. Khan et al. “Fast Dual variational inference fo non-conjugate LGMs”, ICML, 2013
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Bayes learning rule:

Optimal natural parameters = natural gradients [1]

DNN2GP [2] uses this to express both the “iterates” 
and “solutions” as Gaussian process (also see [3])

Extract dual variables 
 from natural 

gradients!
(α*, Λ*)
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Continual Learning with GPs
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Functional Regularization [2]

(θ − θold)⊤Σ−1
old(θ − θold)

[f(Xm) − fold(Xm)]
⊤
Kold(Xm, Xm)−1[f(Xm) − fold(Xm)]

Weights Regularization [1]

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Upcoming result (coming soon): Such regularizers 
enable optimal knowledge transfer!!!

KL(p(θ) | |q(θ)) ≈ KL(p( f ) | |q( f ))
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Continual Learning: Improving Bayes
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FROMP

Task1 Task2 Task3 Task4 Task5 Task6

0.65

0.70

0.75

0.80

V
al

id
at

io
n

ac
cu

ra
cy VOGN

VCL+Coreset

EWC

SI

Training on tasks seperately

Training on all tasks

VCL[1]

SI
EWC[2]

Separate
Training

Task1 Task2 Task3 Task4 Task5 Task6

0.65

0.70

0.75

0.80

V
al

id
at

io
n

ac
cu

ra
cy

VCL+Coreset

EWC

SI

Training on tasks seperately

Training on all tasks

VOGN + 
VCL

FROMP uses a GP prior in “function-space” over the 
“memorable pasts” and improves the performance.

Best Possible
(batch training)

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020



FROMP results (MNIST)

44

Method Permuted Split
DLP [32] 82% 61.2%
EWC [18] 84% 63.1%
SI [37] 86% 98.9%
Improved VCL [33] 93± 1% 98.4± 0.4%

+ random Coreset 94.6± 0.3% 98.2± 0.4%
FRCL-RND [34] 94.2± 0.1% 97.1± 0.7%
FRCL-TR [34] 94.3± 0.2% 97.8± 0.7%
FRORP-L2 87.9± 0.7% 98.5± 0.2%
FROMP-L2 94.6± 0.1% 98.7± 0.1%
FRORP 94.6± 0.1% 99.0± 0.1%
FROMP 94.9± 0.1% 99.0± 0.1%

(a) MNIST comparisons: for Permuted, we use 200 examples
as memorable/coreset/inducing points. For Split, we use 40. (b) Most (left) vs least (right) memorable

Figure 2: (a) On MNIST, FROMP obtains better accuracy than weight-regularisation (EWC, SI,
VCL) and functional-regularisation (FRCL). Note that FRCL does not outperform ‘Improved VCL +
random coreset’ while FROMP does. The standard errors are reported over 5 runs.

4.2 Split CIFAR

Split CIFAR is a more difficult benchmark than MNIST, and consists of 6 tasks. The first task
is the full CIFAR-10 dataset, followed by 5 tasks, each consisting of 10 consecutive classes from
CIFAR-100. We use the same model architecture as Zenke et al. [37]: a multi-head CNN with 4
convolutional layers, then 2 dense layers with dropout. The number of memorable examples is set in
the range 10–200, and we run each method 5 times. We compare to two additional baselines. The
first baseline consists of networks trained on each task separately. Such training cannot profit from
forward/backward transfer from other tasks, and sets a lower limit which we must outperform. The
second baseline is where we train all tasks jointly, which would yield perhaps the best results and
which we would like to match.

The results are summarised in Fig. 3a, where we see that FROMP is close to the upper limit while
outperforming all the other methods. The weight-regularisation methods EWC and SI do not perform
well on the later tasks while VCL forgets the earlier tasks. Poor performance of VCL is most
likely due to the difficulty of using Bayes By Backprop [7] on CNNs3 [23, 31]. FROMP performs
consistently better across all tasks (except the first task where it is close to the best). It also improves
over the lower limit (‘separate tasks’) by a large margin. In fact, on tasks 4-6, FROMP matches the
performance to the network trained jointly on all tasks, which implies that there it completely avoids
forgetting. The average performance over all tasks is also the best (see the ‘Avg’ column).

Fig. 3b shows the performance with respect to the number of memorable past examples. Similarly
to Fig. 3c, carefully selecting memorable example improves the performance, especially when the
number of memorable examples is small. For example, with 10 such memorable examples, a careful
selection in FROMP increases the average accuracy to 70% from 45% obtained by FRORP. Including
the kernel in FROMP here unfortunately does not improve significantly over FROMP-L2, unlike
the MNIST experiment. Fig. 2b shows a few images with most and least memorable past examples
where we again see that the most memorable might be more difficult to classify.

Finally, we analyse the forward and backward transfer obtained by FROMP. Forward transfer means
the accuracy on the current tasks increases as number of past tasks increases, while backward transfer
means the accuracy on the previous tasks increases as more tasks are observed. As discussed in
App. E, we find that, for Split CIFAR, FROMP’s forward transfer is much better than VCL and EWC,
while its backward transfer is comparable to EWC. We define a forward transfer metric as the average
improvement in accuracy on a new task over a model trained only on that task (see App. E for an
expression). A higher value is better and quantifies the performance gain by observing past tasks.
FROMP achieves 6.1± 0.7%, a much higher value compared to 0.17± 0.9% obtained with EWC
and 1.8 ± 3.1% with VCL+coresets. For backward transfer, we used the BWT metric defined in
Lopez-Paz and Ranzato [20] which roughly captures the difference in accuracy obtained when a task

3Previous results by Nguyen et al. [22] and Swaroop et al. [33] are obtained using multi-layer perceptrons.
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Bayesian (Principles for) Learning-Machines

• Uncertainty (Background)

– What you don’t know now, can hurt you later
• Learning (Past work)

– Derive learning-algorithms from Bayes
• Knowledge (Current work)

– Knowledge representation and its transfer
– Memorable experiences (Dharmesh Tailor)
– Continual learning (Emti)
– Meta learning (Pierre Alquier)
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Federated 
learning

Current Work
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Continual
Learning

Reinforcement 
Learning

Online/Meta 
learning

Reasoning

Explainable 
Interpretable

Causality

Active 
learning

Bayesian 
Principles
(Explore-exploit)



How to design AI that learn like us?

• Uncertainty -> Learning -> Knowledge
• Three questions

– Q1: What do we know? (model)
– Q2: What do we not know? (uncertainty)
– Q3: What do we need to know? (action & exploration)

• Posterior approximation is the key
– (Q1) Models == representation of the world
– (Q2) Posterior approximations == representation of the model
– (Q3) The Bayes-dual will enable Knowledge representation, 

transfer, and collection.
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https://team-approx-
bayes.github.io/

Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/
https://team-approx-bayes.github.io/

