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Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too quick to adapt

TayTweets: Microsoft Al bot manipulated
into being extreme racist upon release
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Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o



https://www.youtube.com/watch?v=TxobtWAFh8o

Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives



See Section 6 (discussion) in Khan and Rue, 2021

Principles of “good” algorithms?

* What are (some) common principles of
good algorithms?

« Common origin of Algorithms
— Revise past belief using new data

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATUEAL SELECTIDN,




Principles of “good” algorithms?

* Bayesian principles
— To unify/generalize/improve learning-algorithms
— By computing “posterior approximations”

» Bayesian Learning rule (BLR)

— Derive many existing algorithms
— Deep Learning (SGD, RMSprop, Adam)
— Design new algorithms for uncertainty in DL

* Impact: Everything with the same principle
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The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for Al Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4
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Principle of Trial-and-Error

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss t 1% P K
Data Delep
Model Params Network

Deep Learning Algorithms: 6 < 0 — pH, ' V£(0)

Scales well to large data and complex model, and
very good performance in practice.



A Bayesian Origin

in £(60 vs min K (0) — H(qg
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2]

Natural and Expectation parameters of g

N A= oV (E,[£06)] — H(a)

I | . |
Old belief Revise using new information

through natural gradients

By changing Q, we can recover DL algorithms (and more)
1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-

conjugate models to inferences in conjugate models.” Alstats (2017).
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Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4
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See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective
min £(6) vs min E ) [€(0)] — H(q) Entropy

0 qeQ
"~ Generalized-Posterior approx.
Stancard deuation: 0.00 ™ ™ Instead of the original
| | loss, optimize a different

(smoothed) one (a
popular idea now for DL
theory [4]).

E(loss)

« A common idea in
Inference, optimization,
= online learning,

“*  Reinforcement learning

Standard deviatin

Standard Deviation

Pt

Mean
1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)
2. Many other: Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006)
3. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)
4. Smith et al., On the Origin of Implicit Regularization in Stochastic Gradient Descent, ICLR, 2021 16



See Section 1.2 in Khan and Rue, 2021

Exponential Family

Natural parameters Sufficient statistics  Expectation parameters
} - |

a(6) o exp WT(@)} 1 = By [T(6)]

N(Om,S™) o exp ——(9 m) ' S(6 — ]

X exp SmTH—I—Tr< g >]

" Gaussian distribution q(0) :=N(0m,S™ )
Natural parameters A= {Sm, —S/2}
Expectation parameters p := {E,(0),E,(06")} )

.
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Bayesian learning rule: X < X — oV, (E,[¢(0)] — H(q))

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4
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See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

Bayes Learn Rule: m < m — pV,,£(m)

“Global” to “local” | -
(the delta method) | 0 T PV g [£(0))

B O] = m) | A= A= pV,, (Eql€(0)] — H(q))

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(9) := A/ (m, 1)
Natural parameters Ai=m

Expectation parameters 1 := E,[0] = m
_Entropy H(q) := log(2) /2

J
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See Eqg 25 in Khan and Rue, 2021 (Bonnet’s theorem)

Bayes Prefers Flatter directions

GD: 0+ 06— pVyl(0) = V,£(0:) =0
BLR: m < m — pV,,E,[¢(0)]

= V,E [£0)]=0 = E,[Vy/(®)]=0
|

Bayesian solution

injects “noise” which has
a similar regularization i
effect to noise in

Stochastic GD. It prefers
“flatter” directions.




SGD: Implicit Regularization

(By Thomas Moellenhoff)



2

SGD: Implicit Regularization

SGD. Sep-Size=250

prrnan e

SGD. Swp-Sige-300

'i:'wtiﬁﬁhi

SRS NN




Bayes: Implicit Regularization

_Estlmgtlr)g Gaussian posteriors w_here .the [Eq*[ V,£(0)] =0
variance is fixed, and only the mean is estimated

20
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See Section 4.4, Fig. 1 in Khan and Rue, 2021

Bayes: Implicit Regularization

Eq*[%f(@)] =0 Assign lower
probability to higher
losses (large -ve grad)

Region with
a large loss




Bayes: Implicit Regularization

Bayes solutions (blue) with different variances vs
SGD solutions (red lines) with different learning rates.

500

10
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- "
| am once again asking
foryou to be a Bayesian!



Bayesian learning rule: A < (1 — p)A — pV ,E,[¢(0)]

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

Put the expectation
(Bayes) back in!

The BLR variants
[1,2,3] led to the
winning solution for
the NeurlPS 2021
challenge for
“approximate
inference in BDL".
Watch Thomas

Moellenhoff’s talk at

https://www.youtube.com/
watch?v=LQInINSEU7E

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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See Section 1.3 and 3.2 in Khan and Rue, 2021

Deriving Learning-Algorithms from
the Bayesian Learning Rule

Posterior Approximation «— Learning-Algorithm

Complex < >  Simple

Gradient

Bayes’ rule Mixture Newton  pascent

of Newton
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See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

(Sm — (1 - )Sml— pPVE, () Eq[l(0)]
- —S — QE2)8) P IDY ooy EEP)
e N— X (B V(B @ q)) (—V,.H(q) = A

Derived by choosing a multivariate Gaussian
1 )
)

" Gaussian distribution g(6) := N (8|m, S
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 29



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]
s N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)
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See Section 4.4, Fig. 1 in Khan and Rue, 2021

Bayes leads to robust solutions

Avoiding sharp minima




Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Iteration 1
70¢F
101
> 60}
5 o
iy
- § 50¢
2 S
0.
= S 40}
)
(v}
=51 3 2
;‘ —— Adam ‘>° 30
J. VOGN
s 0 : 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

32


https://github.com/team-approx-bayes/dl-with-bayes

BLR Variants

RMSprop Variational Online Gauss-Newton (VOGN)
g+ V(6) g+ V(0), where 6 ~ N (m,c?)
s (1= p)s+pg° s (1= p)s+p(Xig;)
0—0—a(/s+6) g m < m — a(s +v) Vel(6)

0% (s +7)7 !

Available at https://github.com/team-approx-bayes/dl-with-bayes

The BLR variant from [3] led to the winning solution for the
NeurlPS 2021 challenge for “approximate inference in
deep learning”. Watch Thomas Moellenhoff’s talk at https://
www.youtube.com/watch?v=LQInINSEU7E. '

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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https://github.com/team-approx-bayes/dl-with-bayes

i

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)34



NeurlPS 2019

Tutorial
#NeurlPS 2019

Views 151 807 Presantations 263 Fallowers 200

0

P o« 140

| e |
LJd

Human Learning at
the age of 6 months.

’

PROM SYSTEM | DEP > Catbll NE LIPS WORNSHOP DN

LEARNING TO FVITEN 3 DM s MACHIVE LEARIING 1O,

LiARn NG -y CRERTTNITY AND DLSICN 10
- 3

From Bystem 1 Decp Leaming to Syslem 2 New|PE Workabop on Machine Leaming
Deop Leamning for Creabnvity and Design ..

Ey Yostnm Bong br faegn Herzmarn Agam Relerts

P viremy Oz 11 2006 AL% ceovn Do 148

PETP LTATMING WITH ) Ll DITAMIENT PEDITESING OF
BALEIAN PR LR . DIEP NEURAL METWORL PASY
»e ALGORTHME TO MRk Iw AL
LAlr MmoTUEsL

Deep Learning with
Bayesian Principles S e

br Vivmane 53

by Mohammad Emtiyaz Khan - Dec 9, 20710 - | ki




Past and New Work

Natural Gradient Variational Inference

1.Khan and Lin. "Conjugate-computation variational inference:
Converting variational inference in non-conjugate models to
inferences in conjugate models.” Alstats (2017).

2.Khan and Nielsen. "Fast yet simple natural-gradient descent for
variational inference in complex models." (2018) ISITA.

Mixture of Exponential family

3.Lin et al. "Fast and Simple Natural-Gradient Variational Inference with
Mixture of Exponential-family Approximations,” ICML (2019).

Generalization of natural gradients

4.Lin et al. “Handling the Positive-Definite Constraint in the Bayesian
Learning Rule”, ICML (2020)

5.Lin et al. “Tractable structured natural gradient descent using local
parameterizations”, ICML, (2021)

Gaussian approx «— Newton-variants

Wu Lin (UBC)

Frank Nielsen (Sony)

36



Gaussian Approximation and DL

1.Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in
Adam." ICML (2018).

2. Mishkin et al. “SLANG: Fast Structured Covariance Approximations for Bayesian Deep
Learning with Natural Gradient” NeurlPS (2018).

3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

li Fredenk
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(Postdoc, RIKEN-AIP) 5. S g2 : (UEdinburgh)

] P&

Anirudh Jain  Runa Eschenhagen Siddharth Rich Turner

i Rio Yok
ﬁi‘;}'ﬁz)cﬁiﬁf (T;EVOOT;’E?]) (Intern from (Intern from Swaroop  (UCambridge)

[IT-ISM, India) U Osnabruck) (UCambridge)
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Extensions

* Binary Neural Networks (Bernoulli approx)

1.Meng, et al. "Training Binary Neural Networks using the Bayesian Learning
Rule." ICML (2020).

* (Gaussian Process
2.Chang et al. “Fast Variational Learning in State-Space GP Models”, MLSP (2020)

— For sparse GPs, BLR is a generalization of [1]

B:c%rr?gn X"",‘\;l'grr?'”g Paul Chang W. J. Wilkinson Arno Solin
(Intern from EPFL) (RIKEN-gAIP) (Aalto University) (Aalto University) (Aalto University)

1. Hensman et al. “Gaussian Process for Big Data”, UAI (2013)
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How to design Al that learn like us?

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q3: What do we need to know? (action & exploration)

* Posterior approximation is the key
— (Q1) Models == representation of the world

— (Q2) Posterior approximations == representation of the
model

— (Q3) Use posterior approximations for knowledge
representation, transfer, and collection.
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Approximate Bayesian Inference Team
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