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How to make Al that can
adapt quickly?



Continual Lifelong Adaptation in
Machine Learning

* Even a small change may need full retraining

— Huge amount of resources only few can
afford (costly & unsustainable) [1,2, 3]
— Difficult to apply in “dynamic” settings
(robotics, epidemiology, climate science etc)
* Fix and improve deep learning

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Bayesian Learning Rule [1]

* Bridge DL & Bayesian learning [2-5]

— SOTA on GPT-2 and ImageNet [5]
* Improve other aspects of DL [5-7]

— Calibration, memory, lifelong learning
* Towards human-like quick adaptation

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Khan, et al. Fast and scalable Bayesian deep learning by weight-perturbation in Adam, ICML (2018).
3. Osawa et al. Practical Deep Learning with Bayesian Principles, NeurlPS (2019).

4. Lin et al. Handling the positive-definite constraints in the BLR, ICML (2020).

5. Shen et al. Variational Learning is Effective for Large Deep Networks, Under review.

6. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

7. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)



The Bayesian Learning Rule
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I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of q
} |
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Many well-known algorithms are special-instances obtained by
choosing approximation to g and natural-gradients.

1. Khan and Rue, The Bayesian Learning Rule, JMLR, 2023
2. Khan and Lin. "Conjugate-computation variational inference....” Alstats, 2017



List of algorithms as a special case of the BLR

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vewy Mixture of Gaussians 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (wew) — Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate p; = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family 4+ Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; =1 5.3
VMP — pt = 1 for all nodes 2.3
Non-Conjugate VMP — — 5.3
Non-Conjugate VI (New) Mixture of Exp-family None 5.4




GPT-2 with Bayesian Learning Rule [1]

Better performance & uncertainty at the same cost [2]

- BLR (IVON)[3]
— AdamW
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1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
2. Shen et al. “Variational Learning is Effective for Large Deep Networks.” Under review (2024)



BLR for large deep networks

RMSprop/Adam BLR [1] variant called IVON [5]
(Improved Variational Online Newton)
g+ V() § « V() where 0 ~ N (m,c?)
h « §° heg-(0—m)/o>
h+ (1= p)h+ ph h (1—p)h+ph +p°(h —h)*/(2(h +9))

0« 0—a(g+om)/(Vh+6) 4 m<+m—a(g+om)/(h+9)
0% 1/(N(h+9))

Only tune initial value of h (a scalar)
Check out the blog: https://team-approx-bayes.github.io/blog/ivon/

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

4. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

5. Shen et al. “Variational Learning is Effective for Large Deep Networks.” Under review (2024)



Drop-in replacement of Adam

https://github.com/team-approx-bayes/ivon

2
“J

import torch
+import ivon

train_loader = torch.utils.data.DatalLoader(train_dataset)
test_loader = torch.utils.data.Dataloader(test_dataset)
model = MLP()

-optimizer
+optimizer

torch.optim.Adam(model.parameters())
ivon.IVON(model.parameters())

for X, y in train_loader:

- for _ in range(train_samples):

+ with optimizer.sampled_params(train=True)
optimizer.zero_grad()
logit = model(X)
loss = torch.nn.CrossEntropyLoss(logit, y)
loss.backward()

optimizer.step()



IVON [3] got 1st prize in NeurlPS 2021
Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule
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1 Approximate Bayesian Inference Team 2 Computer Vision Group
RIKEN Center for Al Project, Tokyo, Japan Technical University of Munich, Germany

Dec 14th, 2021 — NeurlPS Workshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020). 10



Validation Error

ImageNet on ResNet-50 (25.6M)
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2% better accuracy over AdamW and 1% over
SGD. Better calibration (ECE of 0.022 vs 0.066)
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ImageNet on ResNet-50 (25.6M)

No severe overfitting like AdamW while improving
accuracy over SGD consistently & better uncertainty

Dataset & Model Epochs  Method Top-1 Acc. 1 Top-5 Acc. T NLL | ECE | Brier |
AdamW 74.56;|;0.24 92.05i0_17 1.018:|:0_012 0.043i0,001 0.352:&0,003
100 SGD 76.1810.09 92941005 092840003 0.01940.001 0.330+0.001
IVON @mean 76.14:|:0.11 92.83:|:0.04 0.934i0,002 0-025i0.001 0.330:|:0,001
ImageNet-lk IVON 76.24;&),09 92.9010,04 0.92510,002 0.015;};0,001 0.330:|:(),001
R t-50
5 oM aarams) AdamW  +2% 75064014 92.372005 101840003 0.06640.002  0.349:0.002
’ 200 SGD +19% 76.63+0.45 93.2140.25 0.917+0.026  0.03840.000  0.326+0.006
IVON @mean 77.30+0.08 93.5840.05 0.884+0.002 0.035+0.002 0.316+0.001
IVON T7.4610 07 93.6810.04 0.869+0.002 0.02210002 0.315+0.001
. AdamW  +15% 47.3340.90 71.5440.05 6.823+0.235 0.42140.008 0.913+0.018
Tinyl Net
ResNet 18 00 SGD #1%61.392015 82301022  1.811i0.010 0.13840.002  0.53640.002
(11M params, wide) IVON@mean 62.4110.15 83.77410.18 1.77640.018 0.150+0.005 0.53240.002
p ’ IVON 62.6810.1¢ 84.12410.24 1.528410010 0.0194+0004 0.49140.001
AdamW  +10% 50.6540.0+ 74.944 ¢ 0 4.48710.0% 0.357+0.0 0.81240.0*
. AdaHessian 55.03i0.53 78.49:|:0_34 2~971j:0.064 0.272i0,005 0.690:&0.008
Tinyl Net
Pi‘l;)l’{::;;%f—l‘leO 200 SGD +2% 89.39+0.50 81.34+0.30 2.04040.040  0.17640.006  0.577+0.007
(4M arams. dee ) IVON @mean 60.85io_39 83.89:|:0.14 1.584io_009 0.053i0,002 0.514:&0.003
p » deep IVON 61.25.045s 84.13.017 1.55040000 0.049.0002 0.51110.003
AdamW  +11% 64.12.10.43 86.85+0.51  3.357+0.071  0.278+0.005  0.61540.008
CIFAR-100 o
ResNet-18 200 SGD +.7% 74.46.10.17 92.66+0.06 1.083+0.007 0.113+0.001 0.376+0.001
(1 M params wide) IVON @mean 74.51:|;0.24 92.7410.19 1.284:|:0.013 0-152:t0.003 0.399j:0,002
’ IVON 75.14 10 34 93.30+0.19 0.91210009 0.02110003 0.344:0003




Sharpness-Aware Minimization (SAM)
from BLR

sAM:  sup £(6 + ¢)

lel<p

A

Our work:
Fenchel
Biconjugate

Bayes:

\ / [EGNJV(O,02)[K(9 + 6)]

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an Optimal Relaxation of Bayes, Under review, 2022
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Characterizing memory through sensitivity

Low Sensitivity
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1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023
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Memory Perturbation Equation

Past that has the most influence on the present

Truth

® gEstimated
A

Current

Estimating it without retraining: Using the BLR, we can
recover all sorts of influence criteria used in literature.

Influence = predictError x predictVariance

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023



Answering “What-If’ Questions

What if we removed a
class from MNIST?

Estimates on
training data
(no retraining)
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brute-force retraining
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Answering “What-If” Questions

What if we merge fine-tuned large-language models?

g) 6
§ ;.é Task Arithmetic 3
LU E OOurs 7
o g ¢4
O .5
&) O :
o 2
= 52 1 8
$ 3
S5 A 016,
= _@g)
0.2 0.4 RoBERTa

Estimate by Gradient Mismatch  on IMDB

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
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Functional Regularization of
Memorable Examples [2]
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1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Functional Regularization of
Memorable Past (FROMP)

Weight-regularizer (EWC) [1]
(0 — 0o1a) " Fora(0 — Oo1a)

A

I Weight uncertainty
Functional regularizer (FROMP) [2]

o (£(0)) — o(fora)] " K gl (£(6)) — ?(fozd)]
Unclertainty Predictions

Why does this work? It is a way to replay past
gradients, which leads to the idea of K-priors.

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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How to combine EWC + FR + Replay

Combine to reduce grad-replay error

Previous Methods
~—EWC

(w—wo1q) F old (w—wolq)

Function Regularizer (FR),

Z K(f’w(ml)7 fwold (w’b))

ieM
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1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023.
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Continual Learning on ImageNet

K-prior allows us to optimally combine model and
data to get good accuracy with little memory.

0.8 o e Separate «-r-rerrrrrrararararans
Kprior
using EWC
0.6 and replay
0.4 Kprior using
Kprior using only EWC

Only
Kprior / only replay
0.2
1 1 I 1 1 LI I I 1 1 I 1 1 LI I

1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023. 21




Bayesian Learning Rule [1]

* Bridge DL & Bayesian learning [2-5]
— SOTA on GPT-2 and ImageNet [5]
* Improve DL [5-7]
— Calibration, uncertainty, memory etc.
— Understand and fix model behavior
» Towards human-like quick adaptation

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Khan, et al. Fast and scalable Bayesian deep learning by weight-perturbation in Adam, ICML (2018).

3. Osawa et al. Practical Deep Learning with Bayesian Principles, NeurlPS (2019).

4. Lin et al. Handling the positive-definite constraints in the BLR, ICML (2020).

5. Shen et al. Variational Learning is Effective for Large Deep Networks, Under review.

6. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

7. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)
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The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Emtiyaz Khan Julyan Arbel Kenichi Bannai Rio Yokota

Research director Research director Co-PI (Japan side) Co-PI

(Japan side) (France side) (Japan side)
Math-Science Team at

Approx-Bayes team at Statify-team, Inria RIKEN-AIP and Keio Tokyo Institute of

RIKEN-AIP and OIST Grenoble Rhéne-Alpes University Technology

Received total funding of around USD 3 million through JST’s
CREST-ANR (2021-2027) and Kakenhi Grants (2019-2021).
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Team Approx-Bayes

Emtiyaz Khan Thomas Geoffrey Wolfer
Team Leader Méllenhoff Special
Research Scientist  Postdoctoral
Resesarcher

Keigo Nishida Zhedong Liu Peter Nickl
Postdoctoral Postdoctoral Research Assistant
Researcher Researcher

RIKEN BDR

https://team-approx-bayes.qgithub.io/
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Many thanks to our group
members and
collaborators (many not
on this slide).

Hugo Monzén

Maldonado
Postdoctoral
Researcher

Joseph
Austerweil

Visiting Scientist

University of
Winsconsin-
Madison

We are always looking
for new collaborations.

Dharmesh Tailor
Remote

Pierre Alquier
Visiting Scientist
ESSEC Business
School

Collaborator
University of
Amsterdam
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