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Al that learn like humans

Quickly adapt to learn new skills, throughout
their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too quick to adapt
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Fail because too slow to adapt

https://www.youtube.com/watch?v=Txobt WAFh80 7
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Adaptive & Robust Learning with Bayes

* “Good” algorithms are inherently Bayesian

* Bayesian learning rule [1]
* Robustness: Memorable experiences [2]

* Adaptation: Knowledge-Adaptation Priors
[3,4,5]

* Take away: A new perspective of Bayes,
essential for adaptive and robust deep learning

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Tailor, Chang, Swaroop, Solin, Khan. Memorable experiences of ML models (in preparation)

3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)



https://arxiv.org/abs/2106.08769

See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

A good algorithm must revise its
*past™ beliefs by using useful
*future™ information

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for Al Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4
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A Bayesian Origin

in £(60 vs min K v(0) — H(g
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of g
! |
A= A= pVi{ B, [00)] — H(q) |
— (I =p)A—pV, Eq£(0)]

* y Y

| . |
Old belief  New information = natural gradients
Using posterior’s information geometry to balance new vs old information

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017). 12



Bayesian learning rule: A < (1 — p)A — pV ,E,[¢(0)]

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4
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See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from Bayes

GD:

BLR:

“Global” to “local” )
(the delta method)

B, [0(6)] ~ ((m)

0« 60— pVel(0)

m < m — pV,f(m)

m < m — pV;,Eq[€(0)]

A= A—pV, (Eq[4(9)] — H(q))

Derived by choosing Gaussian with fixed covariance

_Entropy

" Gaussian distribution () := N(m, 1)
Natural parameters
Expectation parameters i :=E,[0] =m

Ai=m

H(q) = log(2m)/2

J

14



Bayesian learning rule: A < (1 — p)A — pV ,E,[¢(0)]

Learning Algorithm

Posterior Approx. Natural-Gradient Approx.

Sec.

Put the expectation

Optimization Algorithms

Gradient Descent

Gaussian (fixed cov.) Delta method

(Bayes) back in!

1.3

Newton’s method

Multimodal optimization (New)

Gaussian

Mixture of Gaussians

1.3
3.2

Stochastic Gradient Descent
RMSprop/Adam

Dropout

STE

Deep-Learning Algorithms

Gaussian (fixed cov.) Delta method, stochastic approx.

Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

Gaussian (diagonal cov.)

Delta method, stochastic approx.,
responsibility approx.

Mixture of Gaussians

Bernoulli Delta method, stochastic approx.

4.1
4.2

4.5

Online Gauss-Newton (OGN)

(New)

Variational OGN ew)

Gauss-Newton Hessian approx. in
Adam & no square-root scaling

% Remove delta method from OGN

Gaussian (diagonal cov.)

4.4

4.4

BayesBiNN (vew)

Bernoulli Remove delta method from STE

4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes
Laplace’s method
Expectation-Maximization
Stochastic VI (SVI)

VMP

Non-Conjugate VMP
Non-Conjugate VI ew)

Set learning rate py = 1

Delta method

Exp-family

Gaussian

Exp-Family + Gaussian  Delta method for the parameters
Exp-family (mean-field)  Stochastic approx., local p; = 1

pt = 1 for all nodes

[43 143

Mixture of Exp-family None

5.1
4.4
5.2
5.3
5.3
5.3
5.4

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective

Stancare deviztion: .00 : »\

£(0)

E(loss)

~1.40

-0.54

-0.72

Standard Deviation

-0.90

Mean

Instead of the
original loss,
optimize a different
one (Gaussian
convolution)

A popular idea of

- “implicit

regularization” in
DL [4], but also
common in other
fields (RL, search,
robust optimization)

1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)

2. Many other: Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006)
3. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)

4. Smith et al., On the Origin of Implicit Regularization in Stochastic Gradient Descent, ICLR, 2021



See Eqg 25 in Khan and Rue, 2021 (Bonnet’s theorem)

Bayes Prefers Flatter directions

GD: 0+ 06— pVyl(0) = V,£(0:) =0
BLR: m <= m — pVpEqll(0)] = V,E[£@)]=0

Bayesian solution
Injects “noise” which has
a similar regularization
effect to noise in el
Stochastic GD. It prefers
“flatter” directions.




See Section 1.3 and 3.2 in Khan and Rue, 2021

Deriving Learning-Algorithms from
the Bayesian Learning Rule

Posterior Approximation «— Learning-Algorithm

Complex < >  Simple

Gradient

Bayes’ rule Mixture Newton  pascent

of Newton

18



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

(Sm — (1 - )Sml— pPVE, () Eq[l(0)]
- —S — QE2)8) P IDY ooy EEP)
e N— X (B V(B @ q)) (—V,.H(q) = A

Derived by choosing a multivariate Gaussian
1 )
)

" Gaussian distribution g(6) := N (8|m, S
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 19



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]
s N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)

20



BLR Variants

RMSprop Variational Online Gauss-Newton (VOGN)
g+ V(6) g+ V(0), where 6 ~ N (m,c?)
s (1= p)s + pg° s (1= p)s+p(Xig;)
0—0—a(/s+6) g m < m — a(s +v) Vel(6)

ol (s+7)7

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

21


https://github.com/team-approx-bayes/dl-with-bayes

Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Iteration 1
70¢F
101
> 60}
5 o
iy
- § 50¢
2 S
0.
= S 40}
)
(v}
=51 3 2
;‘ —— Adam ‘>° 30
J. VOGN
s 0 : 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Moéllenhoff!, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl', Mohammad Emtiyaz Khan?

s Q.

1 Approximate Bayesian Inferance Team 2 Computer Vision Graup
RIKEN Center for Al Frajact, Tokya, Japan Technical University of Munich, Gemmany

Dec 14th, 2021 — NeurlPS Warkshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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See Section 4.4, Fig. 1 in Khan and Rue, 2021

Bayes leads to robust solutions

Avoiding sharp minima




i

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)z5



NeurlPS 2019
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Robustness

Good algorithms can tell apart
relevant vs irrelevant information

27



How do adapt the knowledge?
Perturbation, Sensitivity, and Duality

28



See Section 5.4 in Khan and Rue, 2021 for local parameterization
See Section 3 in ADAM et al. 2021 for dual parameterization

BLR Solutions & Thelr Duality

Zé A (1—0p) )‘_ZIOVMEQ 4:(0)]
Zv E-[—;(0)]
\ ;
-

Global and local natural parameter

Local parameters are Lagrange Multipliers, measuring the
sensitivity of BLR solutions to local perturbation [1]. They
can be used to tell apart relevant vs irrelevant data.

1. ADAM, Chang, Khan, Solin, Dual parameterization of SVGP, NeurlPS, 2021
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Uncertain Outliers

Memorable Experiences
FMNIST

T-shirt Pullover SandalAnkle boot Shirt

T, :
2 ‘ J
oy d
A AR
. |
: 1
|

1. Schneider et al. DeepOBS: A Deep Learning Optimizer Benchmark Suite”. ICLR 2018



Advantages of Memorable Experiences

* Through posterior approximations, the criteria to
categorize examples naturally emerges

— Generalizes existing concepts such as support
vectors, influence functions, inducing inputs etc

* Local parameters are available for free and applies
to almost “any” ML problem

— Supervised, unsupervised, RL
— Discrete/continuation loss and model parameters
* The sensitivity of posterior leads to “Bayes Duality”

1. Tailor, Chang, Swaroop, Tangkaratt, Solin, Khan. Memorable experiences of ML models (in preparation)



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Julyan Arbel Kenichi Bannai

Research director Co-PI (Japan side)
(Japan side) (France side)

Math-Scierce Team at
Approx-Bayes team at Statify-team, Inria RIKEN-AIP ard <eo

RIKEN-AIP and OIST Grenoble Rhone-Alpes University

Received total funding of around USD 3 million through JST’s

CREST-ANR and Kakenhi Grants.

Rio Yokota

Co-PI
(Japan side)

Tokyo [nstitute of
Tecknclogy
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Adaptation

Continual Learning without
forgetting the past (by using
memorable examples)

33



Continual Learning

Avoid forgetting by using memorable examples [1,2]

Task 2 0 Task 3
Qo o S
Class O:: %b %’0
.E O &
IJQ: X
myin )
(@)
(@)
DDD
Task 1
Class 1

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 34



Functional Regularization of
Memorable Past (FROMP) [4]

Previous approaches used weight-regularization [1,2]

Qnew(e) — Hélél Eq(@) wnew (9)] — H(Q) — Eq(@) [lOg QOld((g)]
! New data Weight-regularizer

We replace it by a functional
regularizer using a “Gaussian Eq, e [log do,,, ()]
Process view” of DNNs [2]

o(£(0)) — o (fora)] K gl (£(0)) — o (fora)]
Kernels weighs examples /~ Forces netlwork-outputs

according to their memorability to be similar

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017

2. Nguyen et al., Variational Continual Learning, ICLR, 2018
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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See Section 3 and 4, and App Ain [2]

K-Priors and Bayes-Duality

* Dual parameterization of DNNs
— expressed as Gaussian Process [1]
— Found using the Bayesian learning rule

* The functional regularizer can provably
reconstruct the gradient of the past faithfully [2]

— Knowledge-Adaptation priors (K-priors)

— There is a strong evidence that “good”
adaptive algorithms must use K-priors

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)



https://arxiv.org/abs/2106.08769
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Faithful Gradient Reconstruction

M=0 True grads (black) ve K-priar (red)

No labels required, so . can include any inputs!
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Summary

* Bayesian principles
— To unify/generalize/improve learning-algorithms
— By computing “posterior approximations”

» Bayesian Learning rule (BLR)

— Derive many existing algorithms
— Deep Learning (SGD, RMSprop, Adam)
— Design new algorithms for uncertainty in DL

* Impact: Everything with the same principle
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