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AI that can learn like us

Quickly adapt & continue to acquire new skills
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Human Learning at 
the age of 6 months.
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Converged at the 
age of 12 months
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Transfer 
skills

at the age 
of 14 

months
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Teacher-
Student 

Learning?



Current state of Machine Learning

10h"ps://www.youtube.com/watch?v=TxobtWAFh8o The video is from 2017

https://www.youtube.com/watch?v=TxobtWAFh8o


Retraining from Scratch

Even when changes are tiny. 
It is costly, undemocratic and 

unsustainable.
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Adaptive Intelligence

How do brains adapt quickly?  
What do they optimize and how?
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1. Sternberg. A theory of adaptive intelligence and its relation to general intelligence.Journal of Intelligence (2019)
2. Sternberg. Adaptive intelligence.  New York: Cambridge University Press (2021)
3. Sternberg. What is intelligence really? the futile search for a holy grail. Learning & Individual Differences (2024)



Adaptive Bayesian Intelligence
• Adaptive Intelligence = Bayesian Computation
• Part 1: Bayesian Learning Rule [1] 

– (Emti) Foundational way to derive learning-algorithms
– (Thomas and Nico) Application to DL: IVON [2] 

• Part 2: Posterior Correction [3]
– (Emti) Foundational way to derive adaptation-algorithms
– (Emti) Application to continual learning [4-5], model merging [6]
– (Siddharth and Thomas) Federated Learning

• More application to DL: 
– (Kenichi, Keigo) Low-Precision training, (Cong-Bai) IVON-LoRA
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1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)
2. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024) 
3. Khan. Knowledge Adaptation as Posterior Correction, arXiv (2025)
4. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020
6. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).



“The fact that many different approaches 
point to the same actual algorithm is a 

major strength of Bayesianity” 

—E. T. Jaynes, discussion of [1]

141. Zellner, Optimal Information Processing and Bayes’ Theorem. The American Statistician (1988)



Bayesian Learning Rule [1]
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Optimization

Gradient Descent
Newton’s Method
Multimodal Optimization

Deep-Learning
SGD, RMSprop and Adam
Sharpness-Aware Minimization
Dropout, STE, Label Smoothing
Shampoo….

Conjugate Bayes
Laplace’s Method
Expectation Maximization
Stochastic Variational Inference
Variational Message Passing

Exponential-Weight Aggregation
Natural Evolution Strategy
Gaussian Homotopy
Smoothed Optimization
Weight-perturbed Optimization
Stochastic Search (annealing)
Stochastic Relaxation

Global-OptimizationApproximate Inference

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).



Variational Formulation of Bayes’ Rule
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pt(θ) ∝ p0(θ)
t

∏
j=1

likj(θ)

qt = arg min
q∈𝒬

t

∑
j=1

𝔼q[−log likj] + KL(q∥p0)

We will use this variational formulation to discover the 
inherent Bayesian nature of (non-Bayesian) algorithms.

Variational Inference to find an approximation qt(θ)

Bayes’ Rule:

= arg min
q∈𝒬

t

∑
j=0

𝔼q[ℓj] − ℋ(q)

∝ e−ℓ0
= ℓj



Exponential Family
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Expectation 
parameters 

Natural 
parameters

Sufficient
Statistics

q(✓) / exp
⇥
�>T (✓)

⇤
<latexit sha1_base64="Oeq3cXtocDvwDkSuRi7xorsSj8A="></latexit>

Gaussian distribution q(✓) := N (✓|m,S�1)
<latexit sha1_base64="DKCbWsaIbOyC4lwnalpsd19I1Zg=">AAACFHicbVDLSgNBEJyNrxhfUY+CDAYhQQ27iiiCEvDiSSKaByQxzE4myZDZhzO9QljzEV4E/REvHhTx6sGbf+NskoMmFjQUVd10d9m+4ApM89uITUxOTc/EZxNz8wuLS8nllaLyAklZgXrCk2WbKCa4ywrAQbCyLxlxbMFKduc08ku3TCruuVfQ9VnNIS2XNzkloKV6cusmXYU2A5LBR8e46hBoUyLC895QvsPONr68DnesXqaeTJlZsw88TqwhSeXWHyM85evJr2rDo4HDXKCCKFWxTB9qIZHAqWC9RDVQzCe0Q1qsoqlLHKZqYf+pHt7USgM3PanLBdxXf0+ExFGq69i6M7pajXqR+J9XCaB5WAu56wfAXDpY1AwEBg9HCeEGl4yC6GpCqOT6VkzbRBIKOseEDsEafXmcFHez1l52/0KncYIGiKM1tIHSyEIHKIfOUB4VEEX36Bm9ojfjwXgx3o2PQWvMGM6soj8wPn8ASxmg0w==</latexit>

Expectation parameters 
Natural parameters � := {Sm,�S/2}

<latexit sha1_base64="fHjnr3/3r7/D+xibQRmAB8DwpFU=">AAACAXicbVDLSgMxFM3UV62vURcKboJF6ELrTEUqglBw47JS+4DOUDKZtA3NZIYkI5ShbvwAf8KNC0XcuvMT3Pkjrk0fC209EDiccy4393gRo1JZ1peRmptfWFxKL2dWVtfWN8zNrZoMY4FJFYcsFA0PScIoJ1VFFSONSBAUeIzUvd7l0K/fEiFpyG9UPyJugDqctilGSkstc9dhOuwjeH4BnaQSHMKjynEBOoOWmbXy1ghwltgTki3txB8PTu673DI/HT/EcUC4wgxJ2bStSLkJEopiRgYZJ5YkQriHOqSpKUcBkW4yumAAD7Tiw3Yo9OMKjtTfEwkKpOwHnk4GSHXltDcU//OasWqfuQnlUawIx+NF7ZhBFcJhHdCngmDF+pogLKj+K8RdJBBWurSMLsGePnmW1Ap5+yR/eq3bKIIx0mAP7IMcsEERlMAVKIMqwOAOPIJn8GLcG0/Gq/E2jqaMycw2+APj/QcLsphb</latexit>

µ := {Eq(✓),Eq(✓✓
>)}

<latexit sha1_base64="+od0oFA4OIy6U3mBfmU4FcpPHws="></latexit>

µ := Eq[T (✓)]
<latexit sha1_base64="LPBDEixPJmnwey2trRKnRMoK/Bk=">AAACCHicbVC7SgNBFJ2NrxhfUUsLR4MQm7CriCIogSBYRsgLskuYnUySIbMPZ+4qYUlhYaO1X2FjoYitn2Dn3zh5FJp44MLhnHu59x43FFyBaX4biZnZufmF5GJqaXlldS29vlFRQSQpK9NABLLmEsUE91kZOAhWCyUjnitY1e0WBn71hknFA78EvZA5Hmn7vMUpAS010tu2F+HTM2x7BDquG1/0G9d1XMra0GFA9p1GOmPmzCHwNLHGJJPfuRWPhae7YiP9ZTcDGnnMByqIUnXLDMGJiQROBeun7EixkNAuabO6pj7xmHLi4SN9vKeVJm4FUpcPeKj+noiJp1TPc3Xn4F416Q3E/7x6BK0TJ+Z+GAHz6WhRKxIYAjxIBTe5ZBRETxNCJde3YtohklDQ2aV0CNbky9OkcpCzDnNHVzqNczRCEm2hXZRFFjpGeXSJiqiMKLpHz+gVvRkPxovxbnyMWhPGeGYT/YHx+QMhgpvD</latexit>

N (✓|m,S�1) / exp


�1

2
(✓ �m)>S(✓ �m)

�

<latexit sha1_base64="LNiRd3HCqoDWUiU+qQaNlQKVfGY="></latexit>

/ exp


(Sm)>✓ +Tr

✓
�S

2
✓✓>

◆�

<latexit sha1_base64="H8MTJf1BF2SFrBrbM8JHnkTocKo="></latexit>

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011



Bayesian Learning Rule (BLR) [1]
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min
θ

ℓ̄(θ) =
t

∑
j=0

ℓj(θ)

Deep Learning to find θ

min
qλ∈𝒬

ℒ(qλ) =
t

∑
j=1

𝔼qλ
[ℓj] + KL(qλ∥p0)

Variational Learning to find qλ(θ)

θ ← θ − ρ P−1 ∇ℓ̄(θ)
SGD or Adam

λ ← λ − ρ F(qλ)−1 ∇ℒ(qλ)
Bayesian Learning Rule

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

Algorithms (such as SGD/Adam) are special cases of 
BLR obtained by choosing specific exp-family  with 
natural parameter  and expectation parameter .

qλ
λ μ

∝ e−ℓ0

λ ← λ − ρ ∇μℒ(λ)
Gradient Natural Gradient



Deriving Gradient Descent from BLR
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GD:

See Section 1.3.1 in Khan and Rue, 2023

θ ← θ − ρ∇ℓ̄(θ)

� := m
<latexit sha1_base64="a96HRJceYu7AvbLB2G0npJD7GWA=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqswooghqwY3LCvYBnaFkMpk2NMkMSUYopb/hxoUibv0K/8Cdf2M67UJbDwQO55zLvTlhypk2rvvtFJaWV1bXiuuljc2t7Z3y7l5TJ5kitEESnqh2iDXlTNKGYYbTdqooFiGnrXBwO/Fbj1RplsgHM0xpIHBPspgRbKzk+9xGI4wur5Dolitu1c2BFok3I5Wbz9Mc9W75y48SkgkqDeFY647npiYYYWUY4XRc8jNNU0wGuEc7lkosqA5G+c1jdGSVCMWJsk8alKu/J0ZYaD0UoU0KbPp63puI/3mdzMQXwYjJNDNUkumiOOPIJGhSAIqYosTwoSWYKGZvRaSPFSbG1lSyJXjzX14kzZOqd1o9u3crtWuYoggHcAjH4ME51OAO6tAAAik8wQu8Opnz7Lw579NowZnN7MMfOB8/uDmTBg==</latexit>

Expectation parameters 
Natural parameters
Gaussian distribution

µ := Eq[✓] = m
<latexit sha1_base64="cNeSOwgBk16lIirR3C0fcoEhwJY=">AAACCHicbVA9SwNBEN3zM8avqKWFq0GwCneKKEIkEATLCCYRckfY22zMkt27c3dOCUcKCxut/RU2ForY+hPs/DfuJSk0+mDg8d4MM/P8SHANtv1lTUxOTc/MZuay8wuLS8u5ldWaDmNFWZWGIlQXPtFM8IBVgYNgF5FiRPqC1f1uOfXr10xpHgbn0IuYJ8llwNucEjBSM7fhyhgfFbErCXR8PznpN68aLnQYEA8XsWzm8nbBHgD/Jc6I5EubN+Kh/HhbaeY+3VZIY8kCoIJo3XDsCLyEKOBUsH7WjTWLCO2SS9YwNCCSaS8ZPNLH20Zp4XaoTAWAB+rPiYRIrXvSN53pvXrcS8X/vEYM7UMv4UEUAwvocFE7FhhCnKaCW1wxCqJnCKGKm1sx7RBFKJjssiYEZ/zlv6S2W3D2CvtnJo1jNEQGraMttIMcdIBK6BRVUBVRdIee0At6te6tZ+vNeh+2TlijmTX0C9bHN129m+g=</latexit>

Entropy

q(✓) := N (m, 1)
<latexit sha1_base64="VLIJksnLhlFGb0I6mjjY2mTg0ss=">AAACCHicbVC7SgNBFJ2NrxhfUQsLCweDsAEJu4pEBCFgYyURzAOyS5idTMyQ2Yczd4WwpLSx8UNsLBSxzSfY+SPWTh6FJh64cDjnXu69x4sEV2BZX0Zqbn5hcSm9nFlZXVvfyG5uVVUYS8oqNBShrHtEMcEDVgEOgtUjyYjvCVbzuhdDv3bPpOJhcAO9iLk+uQ14m1MCWmpm9+5MBzoMSB6fnWPHJ9ChRCRXfdM/xHYeN7M5q2CNgGeJPSG50k48eHLM73Iz++m0Qhr7LAAqiFIN24rATYgETgXrZ5xYsYjQLrllDU0D4jPlJqNH+vhAKy3cDqWuAPBI/T2REF+pnu/pzuGlatobiv95jRjap27CgygGFtDxonYsMIR4mApucckoiJ4mhEqub8W0QyShoLPL6BDs6ZdnSfWoYB8XTq51GkU0Rhrton1kIhsVUQldojKqIIoe0DN6RW/Go/FivBsf49aUMZnZRn9gDH4AN0KbMg==</latexit>

H(q) := log(2⇡)/2
<latexit sha1_base64="TeFJTJQysL/svzgL44d23d+iA7k=">AAACB3icbVC7SgNBFJ2NrxhfqxYWggwGYdPE3YhEBCFgkzKCeUB2CbOT2WTI7MOZWSEs6Wys/A8bC0Vs9RPs/BFrZ5MUmnjgwuGce7n3HjdiVEjT/NIyC4tLyyvZ1dza+sbmlr690xBhzDGp45CFvOUiQRgNSF1SyUgr4gT5LiNNd3CZ+s1bwgUNg2s5jIjjo15APYqRVFJHP7B9JPsYsaQ6Mm4K8PwC2izsGSU7ooXjUkfPm0VzDDhPrCnJV/bijwfb+K519E+7G+LYJ4HEDAnRtsxIOgnikmJGRjk7FiRCeIB6pK1ogHwinGT8xwgeKaULvZCrCiQcq78nEuQLMfRd1ZleLWa9VPzPa8fSO3MSGkSxJAGeLPJiBmUI01Bgl3KCJRsqgjCn6laI+4gjLFV0ORWCNfvyPGmUitZJ8fRKpVEGE2TBPjgEBrBAGVRAFdRAHWBwBx7BM3jR7rUn7VV7m7RmtOnMLvgD7f0H5ASbDA==</latexit>

Derived by choosing Gaussian with fixed covariance

λ ← λ − ρ ∇μ(𝔼q[ℓ̄] − ℋ(q))BLR:
m ← m − ρ ∇m𝔼q[ℓ̄]
m ← m − ρ 𝔼q[∇θℓ̄] Bonnet’s theorem

m ← m − ρ∇ℓ̄(m) First-order delta method
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Bayesian learning rule:
Table 1: A summary of learning algorithms derived from the BLR. Each algorithm is derived through
specific approximations of the posterior and natural-gradient. New algorithms are marked with “(New)”.
Abbreviations: cov. ! covariance, STE ! Straight-Through-Estimator, VI ! Variational Inference,
VMP ! Variational Message Passing.

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.

Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta method 1.3

Newton’s method Gaussian —–“—– 1.3

Multimodal optimization (New) Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

4.2

Dropout Mixture of Gaussians Delta method, stochastic approx.,
responsibility approx.

4.3

STE Bernoulli Delta method, stochastic approx. 4.5

Online Gauss-Newton (OGN)
(New)

Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.4

Variational OGN (New) —–“—– Remove delta method from OGN 4.4

BayesBiNN (New) Bernoulli Remove delta method from STE 4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate ⇢t = 1 5.1

Laplace’s method Gaussian Delta method 4.4

Expectation-Maximization Exp-Family + Gaussian Delta method for the parameters 5.2

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local ⇢t = 1 5.3

VMP —–“—– ⇢t = 1 for all nodes 5.3

Non-Conjugate VMP —–“—– —–“—– 5.3

Non-Conjugate VI (New) Mixture of Exp-family None 5.4

2.1 Bayesian learning rule as natural-gradient descent

Given the objective L(�) = Eq[¯̀(✓)+log q(✓)] in Eq. 2, the classical gradient-descent algorithm performs
the following update:

�t+1  �t � ⇢tr�L(�t). (15)

6

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).



Taylor vs Bayes
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GD: θ ← θ − ρ∇θℓ̄(θold)

m ← m − ρ 𝔼qold
[∇ℓ̄(θ)]

BLR with isotropic Gaussian

 Taylor’s surrogate: ∑
i

θ⊤ ∇ℓi(θold)

 Bayes’s surrogate: ∑
i

θ⊤𝔼qold
[∇ℓi]

Why do we recover optimization algorithm from BLR?

1st-order

mold BLR generalizes Taylor!

Eq. 18 in Khan and Nielsen (2018), Eq.  59 Khan and Rue (2023), Eq. 3 in Section 2 in Khan (2025)



Bayes Generalizes Taylor
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2nd-order

∑
i

θ⊤𝔼qold
[∇ℓi]

BLR with exponential-family:

Sites are important for adaptation!mold

= exp( −
t

∑
i=0

T(θ)⊤ ∇μ𝔼qold
[ℓi])

qold ∝ exp(T(θ)⊤λold)

Site ̂ℓi|old(θ)

BLR with full
cov Gaussian:

+
1
2

(θ − mold)⊤𝔼qold
[∇2ℓi](θ − mold)

Eq. 18 in Khan and Nielsen (2018), Eq.  59 Khan and Rue (2023), Eq. 3 in Section 2 in Khan (2025)

Suff stats

Natural gradients



Dual-Representation of the BLR
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= exp( −
t

∑
i=0

T(θ)⊤ ∇μ𝔼qt
[ℓi])qt ∝ exp(T(θ)⊤λt)

Site ̂ℓi|t(θ)

qt ∝
t

∏
i=0

exp(− ̂ℓi|t)
Natural 
gradients

λt =
t

∑
i=0

∇μ𝔼qt
[ℓi]

Natural 
parameters

1. Khan et al. Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models. ICML (2013)
2. Khan and Nielsen. Fast yet Simple Natural-Gradient Descent for Variational Inference … ISITA (2018)
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Processes. NeurIPS (2019)
4. Adam et al. Dual Parameterization of Sparse Variational Gaussian Processes. NearIPS (2021)
5. Chang et al. Memory-Based Dual Gaussian Processes for Sequential Learning. ICML (2023)
6. Moellenhoff et al. Federated ADMM from Bayesian Duality. arXiv (2025)

Natural Gradients are additive (representation 
theorem). Largest ones are the most influential. 

Sec 4.1 Khan (2025)

SitesPosterior
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Continual Learning

Elastic Weight Consolidation
Variational Continual Learning
Memory Replay Methods
Functional Regularization

Model Merging
Task Arithmetic
Fisher/Hessian-Based Merging
Ensembles Methods

Knowledge Distillation
Learning with Privileged information
Incremental SVMs

FedAvg, FedDyn
Alternating Direction Method
     of Multipliers (ADMM)
Alternating Minimization 
     Algorithm (AMA)
Partition Variational Inference

Federated Learning

Student-Teacher Learning

Unlearning and Influence

1. Khan, Knowledge Adaptation as Posterior Correction, arXiv (2025)

Posterior Correction [1]



Adaptive Intelligence

How do brains adapt quickly?  
What do they optimize and how?

25

1. Sternberg. A theory of adaptive intelligence and its relation to general intelligence.Journal of Intelligence (2019)
2. Sternberg. Adaptive intelligence.  New York: Cambridge University Press (2021)
3. Sternberg. What is intelligence really? the futile search for a holy grail. Learning & Individual Differences (2024)



Variational Formulation of 
Online Bayesian Inference
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∝ pt(θ) e−ℓt+1(θ)

Variational formulation:

Bayes’ Rule: pt+1(θ) ∝ p0(θ)
t+1

∏
j=1

e−ℓj(θ)

qt+1 = arg min
q

t+1

∑
j=1

𝔼q[ℓj] + KL(q∥p0)

̂qt+1 = arg min
q

𝔼q[ℓt+1] + KL(q∥qt)

How inaccurate is  ? Can we correct it to exactly 
recover ? This is the goal of posterior correction.

̂qt+1
qt+1

1. Nguyen et al. Variational continual learning. ICLR (2018)

Batch:

Online [1]:
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Continual Learning Model Merging

Federated LearningUnlearning and Influence

!!"# !! !!$#

!!"# !! !!$#

!! !!\#

!!!":$

!!		

!"#$

	!%

!!!"

Posterior Correction [1]

1. Khan, Knowledge Adaptation as Posterior Correction, arXiv (2025)

!!		

!"

	!#

!!!"

!$$%



Correct the Past due to the 
Interference Created by the Future

28

New data

Old qt

New qt+1

Old data

Old data

New data

Interference



Posterior Correction

291. Khan, Knowledge Adaptation as Posterior Approximation, arXiv (2025)

= arg min
q

𝔼q[ℓt+1] + KL(q∥qt) +
t

∑
j=0

𝔼q[ℓj − ̂ℓj|t]

Correction

qt+1 = arg min
q

t+1

∑
j=1

𝔼q[ℓj] + KL(q∥p0)

̂qt+1 = arg min
q

𝔼q[ℓt+1] + KL(q∥qt)

We will use the site functions to correct the posterior!

Batch:

Online:

Eq. 4 in Khan (2025)

qt

∏t
i=0 exp(− ̂ℓj|t)

Very simple proof (3 lines). Exact recovery in general!
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Correction as Prediction Mismatch

30

mt+1 = arg min
m

𝔼q[
1
2

(yt+1 − x⊤
t+1θ)2] + KL [𝒩(m, I)∥𝒩(mt, I)]

+
t

∑
j=1

1
2

(x⊤
j mt − x⊤

j m)2 + . . .

Linear regression with isotropic Gaussian posterior

!!

Eq. 7 in Khan (2025)

Error due to mean-field is 
fixed by the correction!
1
2

(m − mt)⊤(
t

∑
j=1

xjx⊤
j )(m − mt)

Prediction mismatch is simpler to implement!

Mismatch at
past examples 



Knowledge-Adaptation Prior
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1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
2. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
3. Benjamin et al. Measuring and regularizing networks in function space. ICLR 2019.
4. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurIPS 2020.
5. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurIPS, 2001.
6. Vapnik and Izmailov. Learning using privileged information: similarity control and .… JMLR, 2015.
7. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS’17
8. Csató and Opper. Sparse on-line Gaussian processes. Neural computation, 2002.

mt+1 = arg min
m

ℓt+1 +
ρ
2

∥m − mt∥2+
t

∑
j=1

ℓj ( ̂yj(mt), ̂yj(m))

Posterior correction with isotropic Gaussian reduces to 
“prediction or gradient mismatch” (K-priors) [1]

Many adaptation methods (assuming linearity) reduce 
this mismatch [2-8] & Posterior Correction generalizes it!

Sec 4.3-4.4 in Khan (2025)



Generalization to Non-Linear Cases
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Teacher’s mistakes 
provided to the student

Student solves a 
simpler problem

Requires an additional effort to “avoid past mistakes”

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .… JMLR, 2015.

mt+1 = arg min
m

ℓt+1 +
ρ
2

∥m − mt∥2 +
t

∑
j=1

ℓj ( ̂yj(mt), ̂yj(m))
+

t

∑
i=1

ri|t [fi(m) − f lin
i (m)]

Similar to 
student-teacher 
learning [1,2]

Eq. 8 in Khan (2025)



Three types of Examples
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Very similar to Support Vectors!

Goes well  
with EWC

Goes well  
with Prediction  
Mismatch

Goes well  
with Replay

Easy

Uncertain/ 
Ambiguous 

Miscalssified / 
Atypical / 
Outlier etc.



How to Solve Adaptation!
• Three kinds of regularizations required for three different 

kinds of examples
1.Weight regularization for examples where both feature 

and predictions do not change
2.Prediction matching handles examples where features 

are static but predictions need adjustments
3.Memory replay handles examples with large prediction 

errors and dynamic features
• Any adaptive learning require a balance these three
• Memory requirements increase as we move from 1 to 3.
• These sets characterize the difficulty of adaptations.
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From Quick to Slow Adaptation
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θt

θt+1

𝒟t

𝒟t+1

Correction as Information Gain

Sec 4.2 in Khan (2025)



Quick Adaptation with Compact Memory
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Task 1

Task 2
Task 3

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Class 0

Class 1

Choose memories where interference is more likely.
Small correction  Small memory  Quick adaptation⟹ ⟹



Combine Methods to Reduce Correction

371. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023.

Published in Transactions on Machine Learning Research (11/2023)
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Figure 4: Results on ImageNet-1000. EWC+FR+Replay performs favorably across a range of memory
sizes (left; x-axis log-scaled), and su�ers less from forgetting (relative to Batch Joint) with an increasing
number of tasks, here exemplary shown at the largest memory size of 7.5% (right).

2) weight-regularization – LwF (Li & Hoiem, 2017), EBLL (Rannen et al., 2017), EWC (Kirkpatrick et al.,
2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2018), mode-IMM (Lee et al., 2017), and 3) architectural
– PackNet (Mallya & Lazebnik, 2018), HAT (Serra et al., 2018) (Fig. 3 right).5

6.4 Results on ImageNet-1000

Setup. We consider the ImageNet-1000 benchmark proposed by Rebu� et al. (2017), which randomly splits
the full ImageNet dataset (Deng et al., 2009) of ≥1.2M data points into a sequence of 10 tasks with 100
classes and ≥120K data points each. Following Rebu� et al. (2017), we use a ResNet-18 with ≥11M model
parameters. For training on each task, we use the ImageNet reference training pipeline (with 40 epoch
configuration) of the FFCV library (Leclerc et al., 2022).6

Results. Fig. 4 shows our results on ImageNet-1000. We consider memory sizes between 200 and 10K per
task, where the latter amounts to 7.5% of the entire data. The observed trends qualitatively match those
from previous experiments. In particular, FR underperforms for small memory sizes, and while it improves
with increasing memory, it peaks at a 3.8% memory and then even starts declining. We hypothesize that this
is again due to accumulation of the NN error, which might become more severe with a larger memory as more
data points can contribute to the error. EWC+FR again improves accuracy for small memories, but does not
help for large memories. Finally, correcting for the NN error by additionally including the experience replay
term (EWC+FR+Replay) substantially boosts performance also at the large 7.5% memory. EWC+FR+Replay

thus combines the benefits of both error correction terms to perform well across all memory sizes, achieving
> 80% of the batch performance with a memory of < 10% of the past data. It also again su�ers less from
forgetting along the task sequence, demonstrating that it better mitigates error accumulation.

7 Conclusion

In this work, we proposed to address the continual learning problem in a theoretically-grounded way by
explicitly approximating the optimal model obtained via batch-training on all tasks jointly. To this end,
we developed EWC+FR+Replay, a new continual learning method which e�ciently re-uses prior knowledge
to reconstruct the gradients of the past training objective as faithfully as possible. To achieve this, our
method combines principles from function-regularization, weight-regularization, and experience replay to
reduce the gradient-reconstruction error. Empirically, we demonstrated the e�ectiveness and scalability of
EWC+FR+Replay across di�erent memory sizes on common task-incremental continual learning benchmarks.
In particular, we showed that our proposed EWC+FR+Replay approach can be less susceptible to catastrophic

5Results are from Delange et al. (2021); their total memory sizes [4500, 9000] correspond to [5.6%, 11.2%] of the data.
6For all details of the training procedure, see https://github.com/libffcv/ffcv-imagenet/.
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Get 78% accuracy with 7.5% (random) memory

ImageNet with 
ResNet-18 [1]



Reducing Correction Improves 
Performance in LLM fine-tuning

381. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

Preprint. Under review.
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Figure 1: The left panel illustrates our approach. We connect the error � of the merged model ✓merged
to the gradient mismatch over losses ¯̀

t and propose a new method that reduces the mismatch by
using the Hessian Ht and error �t of the individual models ✓t. The right panel shows an example of
adding datasets to RoBERTa trained on IMDB. We clearly see that reducing mismatch also reduces
test error of task arithmetic. We consider 5 datasets, each indicated by a number on the markers.

can leverage them to further improve model merging. Empirical results on LLMs and ViTs show
consistent improvements, both in terms of performance and robustness to hyperparameters.

2 MODEL MERGING BY PARAMETER AVERAGING

We consider merging multiple models that share the same architecture but are trained on different
datasets, for example, by fine-tuning a large pretrained model. We denote each of the T > 1 models
by its parameter vector ✓t 2 Rd. Throughout this section, we will use an LLM, denoted by ✓LLM,
but the results straightforwardly apply to other pretrained models. Given ✓LLM and different ✓t, our
goal is to understand the inaccuracies in existing parameter-averaging methods and improve them.

We focus on the following simple weighted-averaging scheme: ✓̄ = S0 ✓LLM +
PT

t=1 St ✓t, where
✓̄ is the merged model obtained with scaling matrices St 2 Rd⇥d for t = 0, 1, . . . , T . Since the
dimension d is often large, simple choices of St are used in practice. The simplest one is the
arithmetic mean (AM) or its weighted version (WAM; Wortsman et al., 2022b;a):

✓̄AM =
1

T

TX

t=1

✓t, ✓̄WAM = ↵0✓LLM +
TX

t=1

↵t✓t, (1)

where ↵t � 0. For large models, different parameters have different scaling and it is better to take
this into account, for example, by using the Fisher matrix Ft:

✓̄FA =
TX

t=1

St✓t, where St = ↵tF̄
�1

Ft with F̄ =
TX

t=1

↵tFt, for all t � 1, (2)

giving rise to ‘Fisher Averaging’ (FA). We could similarly include S0 by using the Fisher F0 of
the LLM. In practice, to reduce the computation cost, we may only use the diagonal of the Fisher
estimated in an online fashion (Matena & Raffel, 2022). This is similar to strategies in continual
learning (Kirkpatrick et al., 2017) where the choice of Fisher is justified through Bayesian updating
Huszár (2018). However, such connections are not yet explored or exploited for model merging.

Using Fisher should improve things a bit but the extent of improvement is unclear. A recent work
by Jin et al. (2023) uses insights from linear models to justify some of these choices, but such
justification may not hold for nonlinear models. In general, it is also not clear how Fisher-averaging
takes care of the commonalities between the fine-tuning ✓t of the LLM ✓LLM. Should we include
F0 or not, and how should it be combined with the other Ft so as to avoid double counting of
information in the models? The current practice is to simply tune ↵t on a validation set which is one
way to make up for the errors, but this can quickly become expensive as T increases.

Recently, Ilharco et al. (2023) proposed to subtract the contribution of ✓LLM with the follow-
ing simple ‘task arithmetic’ (TA): ✓̄TA = ✓LLM +

PT
t=1 ↵t(✓t � ✓LLM). Subtracting ✓LLM

2
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Summary of Federated Learning, 
Model Merging, and Memories etc.
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qjnt = arg min
q

KL(q∥q1q2) +
2

∑
j=1

𝔼q[ℓj − ̂ℓj|j]

Recover  from  and qjnt q1 q2

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
2. Monzon et al. How to Weight Multitask Finetuning? Fast Previews via Bayesian Model-Merging, 2024
3. Swaroop, Khan, Doshi, Connecting Federated ADMM to Bayes, ICLR 2025
4. Moellenhoff et al. Federated ADMM from Bayes Duality, arXiv, 2025
5. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS (2023)

By choosing different q, we get different strategies (better 
q gives better merging) [1,2]. Same is true for federated 
learning [3,4]. All of them will benefit from compact 
memories designed to reduce corrections [5].
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ADMM as a special case of Bayes (Dual)



Adaptive Bayesian Intelligence

• Adaptive Intelligence = Bayesian Computation
• Part 1: Bayesian Learning Rule [1] 

– Foundational way to derive learning-algorithms
– Application to Deep Learning [2] 

• Part 2: Posterior Correction [3]
– Foundational way to derive adaptation-algorithms
– Application to continual learning [4-5]
– But also for LLM merging, Federated Learning etc.

• Adaptive Bayesian Intelligence: A roadmap.
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1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)
2. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024) 
3. Khan. Knowledge Adaptation as Posterior Correction, arXiv (2025)
4. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020



Questions for the future

• What should the algorithm remember?
• And what new experiences should it seek?
• Memory should be chosen to minimize the 

corrections that may arise in the future.
• New experiences should be chosen to enable easy-

enough corrections (not too daunting for the learner)
• Future is unknown but the algorithm has the freedom 

to explore by “fixing the past & choosing the future”
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Choosing
Fixing


