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Al that can learn like us

Quickly adapt & continue to acquire new skills



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Teacher-
Student
Learning?




Current state of Machine Learning

T

https://www.youtube.com/watch?v=TxobtWAFh80 10



https://www.youtube.com/watch?v=TxobtWAFh8o

Retraining from Scratch

Even when changes are tiny.

It is costly, undemocratic and
unsustainable.

11



Adaptive Intelligence

How do brains adapt quickly?
What do they optimize and how?

1. Sternberg. A theory of adaptive intelligence and its relation to general intelligence.Journal of Intelligence (2019)
2. Sternberg. Adaptive intelligence. New York: Cambridge University Press (2021)
3. Sternberg. What is intelligence really? the futile search for a holy grail. Learning & Individual Differences (2024),



Adaptive Bayesian Intelligence

Adaptive Intelligence = Bayesian Computation
Part 1: Bayesian Learning Rule [1]
— (Emti) Foundational way to derive learning-algorithms
— (Thomas and Nico) Application to DL: IVON [2]
Part 2: Posterior Correction [3]
— (Emti) Foundational way to derive adaptation-algorithms
— (Emti) Application to continual learning [4-5], model merging [6]
— (Siddharth and Thomas) Federated Learning
More application to DL.:
— (Kenichi, Keigo) Low-Precision training, (Cong-Bai) IVON-LoRA

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)

2. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)

3. Khan. Knowledge Adaptation as Posterior Correction, arXiv (2025)

4. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).

5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020

6. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024). 13



“The fact that many different approaches
point to the same actual algorithm is a
major strength of Bayesianity”

—E. T. Jaynes, discussion of [1]

1

1. Zellner, Optimal Information Processing and Bayes’ Theorem. The American Statistician (1988) 14



Optimization Deep-Learning

Bayesian Learning Rule 1

Approximate Inference Global-Optimization

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).



Variational Formulation of Bayes’ Rule

!
Bayes’ Rule: p,(0) pO(e)H lik;(6)
j=1

Variational Inference to find an approximation ¢,(6)

t
g, = arg min Z E,[=log lik;] + KL(q||py) )

C]E@ j=1 _ Lﬂj x e Yo
4
= arg min Z E ;] — #(q)
qe@ 20

We will use this variational formulation to discover the
iInherent Bayesian nature of (non-Bayesian) algorithms.



Exponential Family

Natural Sufficient Expectation
parameters Statistics parameters
b }
a(0) o< exp [ATT(0)] = E[T(0)
N(Olm,S™1) o< exp 1(9 m) )]
s (S )
x exp [(Sm) 0+ Tr 5
" Gaussian distribution q(0) :=N(0lm,S™ 1) )
Natural parameters A= {Sm,—5/2}
| Expectation parameters = {E, (0 ), E,(06")}

J

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 17



Bayesian Learning Rule (BLR) [1]
Deep Learning tofind@  Variational Learning to find g,(60)

min 7(0) = Z £(6)  min (g = 2 E,[4)1+ KL(q]|p)

J=0 A j=1 x e %0
SGD or Adam Bayesian Learning Rule
0 —0—pP'VEO) 1< i-pFlg) ' VL g)

Gradient Natural Gradient

Ae=A=pV,ZLQ)

Algorithms (such as SGD/Adam) are special cases of
BLR obtained by choosing specific exp-family g, with

natural parameter A and expectation parameter p.

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).



See Section 1.3.1 in Khan and Rue, 2023

Deriving Gradient Descent from BLR

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution q(0) := N(m, 1)
Natural parameters A:i=m
Expectation parameters p = E,[0] = m

 Entropy H(q) = log(2m)/2

BLR: 2 < A=p V,(E171- #())
m<—m-—p Vm[Eq[g]
me«—m-—p [Eq[ VQZ] Bonnet’s theorem

m <— m — p V Z(m) First-order delta method

GD: 6« 60-pVZL0O)

19



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

20



Eq. 18 in Khan and Nielsen (2018), Eq. 59 Khan and Rue (2023), Eq. 3 in Section 2 in Khan (2025)

Taylor vs Bayes

Why do we recover optimization algorithm from BLR?
GD: 60« 0—pVyl(6,,)
Taylor’s surrogate: Z 0'V£(0,,)

BLR with isotropic Gaussian
m<«—m-—p [E%ld[Vg(Q)]

stoder  BAYES’S SUrrogate: Z QT[E%M[VKZ.]

My BLR generalizes Taylor!




Eq. 18 in Khan and Nielsen (2018), Eq. 59 Khan and Rue (2023), Eq. 3 in Section 2 in Khan (2025)

Bayes Generalizes Taylor

BLR with full T
0'E, [VZ
cov Gaussian: Z gl Vil

1 6 — TE, [V2£,](0 —
+ y ( mold) qud[ z]( mold)

BLR with exponential-family:

Suff stats

2nd-order G, 11 X CXP(T(e)T/IOId)

t Natural gradients
_ exp( - Y 10, [E%ld[fi]>
= Site 2,1,,4(0)
Sites are important for adaptation!




Sec 4.1 Khan (2025)

Dual-Representation of the BLR

4, < exp(T(O)4) =exp( = Y, TOTV,E,I4])
= Ssite 2,,(6)

[ . t
q; X HGXP(—Lﬂi“) A= Z V/,,[eq[fi]

l .
Posterior Sites Natural =0 Natural
parameters gradients

Natural Gradients are additive (representation
theorem). Largest ones are the most influential.

1. Khan et al. Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models. ICML (2013)

2. Khan and Nielsen. Fast yet Simple Natural-Gradient Descent for Variational Inference ... ISITA (2018)

3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Processes. NeurlPS (2019)

4. Adam et al. Dual Parameterization of Sparse Variational Gaussian Processes. NearlPS (2021)

5. Chang et al. Memory-Based Dual Gaussian Processes for Sequential Learning. ICML (2023)

6. Moellenhoff et al. Federated ADMM from Bayesian Duality. arXiv (2025) 23



Continual Learning Model Merging

Posterior Correction

Unlearning and Influence Federated Learning

Student-Teacher Learning

1. Khan, Knowledge Adaptation as Posterior Correction, arXiv (2025)



Adaptive Intelligence

How do brains adapt quickly?
What do they optimize and how?

1. Sternberg. A theory of adaptive intelligence and its relation to general intelligence.Journal of Intelligence (2019)
2. Sternberg. Adaptive intelligence. New York: Cambridge University Press (2021)
3. Sternberg. What is intelligence really? the futile search for a holy grail. Learning & Individual Differences (2024)



Variational Formulation of
Online Bayesian Inference

1

Bayes’ Rule: p,. (0) « pO(H)He_'fJ(Q) x p,(0) e~
=1
Variational formulation:
t+1
Batch: qry1 = AIE mqin Z [Eq[?/ﬂj] + KL(q||py)
=1

Online [1]: ¢,y = argmin E [£,,,]+ KL(q]|g,)
q

How inaccurate is g,, ; ? Can we correct it to exactly
recover ¢, 7 This is the goal of posterior correction.

1. Nguyen et al. Variational continual learning. ICLR (2018)



Continual Learning Model Merging
— CITt—_>1 th — th+1 Ch\LLM

Posterior Correction

Unlearning and Influence Federated Learning
dt E (ft\i CIf\/ 'CTIZ
CIjnt

1. Khan, Knowledge Adaptation as Posterior Correction, arXiv (2025)



Correct the Past due to the
Interference Created by the Future

Interference

28



Eq. 4 in Khan (2025)

Posterior Correction

We will use the site functions to correct the posterior!

+1
Batch: ¢, = argmin Z E,[7;]1 + KL(qlIpy)
a0
t A
= argmin E [£,,,]+ KL(qllq) + Z E ;=7
q —
=0 Gorrection

Online: ¢, = argmin [Eq[fﬂ—l] + KL(qllg,)
q

Very simple proof (3 lines). Exact recovery in general!

1. Khan, Knowledge Adaptation as Posterior Approximation, arXiv (2025) 29



Eq. 7 in Khan (2025)

Correction as Prediction Mismatch

Linear regression with isotropic Gaussian posterior

, 1
m,, | = argmin [Eq[a(yt+1 t+19)2] + KL [/V(m DIV (m, I)]

m

LT T, N2
+22(xjm, xjm) +

Mismatch at i=1

past examples
Error due to mean-field is

fixed by the correction!

// %(m - mt)T< Z xjij)(m —m,)

Prediction mismatch is simpler to implement!

30



Sec 4.3-4.4 in Khan (2025)

Knowledge-Adaptation Prior

Posterior correction with isotropic Gaussian reduces to
“prediction or gradient mismatch” (K-priors) [1]

t
. p A A
My, =argming, ; + Ellm — m,||*+ Z 4 <yj(mt)a )’j(m)>
m
j=1

Many adaptation methods (assuming linearity) reduce
this mismatch [2-8] & Posterior Correction generalizes it!

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).

2. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.

3. Benjamin et al. Measuring and regularizing networks in function space. ICLR 2019.

4. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurlPS 2020.

5. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurlPS, 2001.

6. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.

7. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS’17

8. Csat6 and Opper. Sparse on-line Gaussian processes. Neural computation, 2002. 31



Eq. 8 in Khan (2025)

Generalization to Non-Linear Cases

Requires an additional effort to “avoid past mistakes”

4
. p A A
m,,=argmin?, ; + Ellm —m||* + Z 4 (yj(mt), yj(m))

=1 1
lin
+ ) 1y [fim) = flinGm)|
o , . =1
Similar to Te.acher s mistakes Student solves a
provided to the student simpler problem

student-teacher
learning [1,2]

<
b,\e/

stakes
1. Hinton et al. Distilling the knowledge in a neural network, arXiv, w2,\051 § ‘

2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015. 32



Three types of Examples

Very similar to Support Vectors!

Goes well O
with EWC

[l
20 i c
| Goes well
G LD I%l with Replay

Uncertain/ Miscalssified /
Ambiguous ] [ Atypical /
Goes well Outlier etc.

with Prediction
Mismatch O

33



How to Solve Adaptation!

Three kinds of regularizations required for three different
kinds of examples

1.Weight regularization for examples where both feature
and predictions do not change

2.Prediction matching handles examples where features
are static but predictions need adjustments

3.Memory replay handles examples with large prediction
errors and dynamic features

Any adaptive learning require a balance these three
Memory requirements increase as we move from 1 to 3.
These sets characterize the difficulty of adaptations.



Sec 4.2 in Khan (2025)

From Quick to Slow Adaptation

Correction as Information Gain

35

o o %o
® 800, °°
0 60 o . o
. %% % @ o
o&%v °

Mismatch




Quick Adaptation with Compact Memory

Choose memories where interference is more likely.
Small correction =— Small memory — Quick adaptation

Task 2

Class O, ?8’
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Task 158
‘f " Class 1

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 36



Combine Methods to Reduce Correction

Get 78% accuracy with 7.5% (random) memory

— Batch Joint — = — = — = = = o e e
E Q0% o e Batch Separate .........................
< EWC+FR+Replay
=
D)
2 60% -
o0
S « ==« == Online EWC
5 40% = /
O
= FR
o
= 20% - EI/

I 1 1 1 1 II | I | 1 I 1 1 1 1 I 11 I
0.1% 0.5% 2.0% 7.5%

Memory size (% of data)

1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023.



Reducing Correction Improves
Performance in LLM fine-tuning

®)) 6
= Task Arithmetic
£ 9 3
E > OOurs >
© %4

o
2 52 1 5
2 £
S A 010,
87 oo

0.2 04
Estimate by Gradient Mismatch ~ RoBERTa

on IMDB

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
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Summary of Federated Learning,
Model Merging, and Memories etc.

Recover g;,, from g, and g, q q,
N

2

ant = arg min KL(Q”QIQZ) + Z [Eq[fj - 2j|j] CIjnt
q

j=1

By choosing different q, we get different strategies (better
g gives better merging) [1,2]. Same is true for federated
learning [3,4]. All of them will benefit from compact
memories designed to reduce corrections [5].

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

2. Monzon et al. How to Weight Multitask Finetuning? Fast Previews via Bayesian Model-Merging, 2024

3. Swaroop, Khan, Doshi, Connecting Federated ADMM to Bayes, ICLR 2025

4. Moellenhoff et al. Federated ADMM from Bayes Duality, arXiv, 2025

5. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023) 39



ADMM as a special case of Bayes (Dual)

ADMM | | Bayes Duality
' server clients | - S Slients
?(SF:G?; - 0 broadcast 9@ | [0 special IT sp::cg i broadcast glent
parameter oo | distributions -
1 K | e U Dy~ - Gug
- e <
=t V¢, = V,E[Z]
i gather case ] S gather N P
v-space = -space =
gradients 4 @ Vi..-Vk natural gradients A @ j'1)“1('

Algorithm 1 BayesADMM (Fig. 2b) for Gaussians with diagonal covariance. Additional steps when

compared to Federated ADMM are highlighted in red. Implementation details are in|App. D|

Hyperparameters: Prior precision § > 0, step-sizes p > 0 and v > 0.
Initialize: v; <+ 0,u; < 0,m < 0,8 < 40, a < 1/(1 + pK).
1: while not converged do

2:

3
4:
3¢
6.
7
8

9:
10:
11:

Broadcast m and S to all clients.

for each client 1, ..., K in parallel do
Local training on £ (0) + 0 ' v, — %OT(ukB) + 21|60 — m)||2 > Using IVON
Vi < Vi + 7 (skmk —_ §ﬁ’1)
up < ug + v (sg —8) > An additional dual variable.
end for

Gather m;, v and s;, ux from all clients.
m < (1 — a)Mean(s;.xmj.x) + aSum(vy.x)

S < (1 — a)Mean(s;.x) + @ [01 + Sum(u;.x)] > Two additional steps for precision §
m < m/s

12: end while

40



Adaptive Bayesian Intelligence

* Adaptive Intelligence = Bayesian Computation

* Part 1: Bayesian Learning Rule [1]
— Foundational way to derive learning-algorithms
— Application to Deep Learning [2]

» Part 2: Posterior Correction [3]

— Foundational way to derive adaptation-algorithms
— Application to continual learning [4-5]

— But also for LLM merging, Federated Learning etc.
* Adaptive Bayesian Intelligence: A roadmap.

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)

2. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)

3. Khan. Knowledge Adaptation as Posterior Correction, arXiv (2025)

4. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).

5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Questions for the future

What should the algorithm remember?
And what new experiences should it seek?

Memory should be chosen to minimize the
corrections that may arise in the future.

New experiences should be chosen to enable easy-
enough corrections (not too daunting for the learner)

Future is unknown but the algorithm has the freedom
to explore by “fixing the past & choosing the future”

Fixing ey
Olfoloilglel] SHAPIMNC-THE FUTURE
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