



## Adaptive Bayesian Intelligence (AGI meets ABI)

### Mohammad Emtiyaz Khan RIKEN Center for AI Project, Tokyo https://emtiyaz.github.io



Summary of recent research at <u>https://emtiyaz.github.io/papers/symposium\_2024.pdf</u> Slides available at <u>https://emtiyaz.github.io/</u>

## Al that can learn like us

Quickly adapt & continue to acquire new skills

# Human Learning at the age of 6 months.



# Converged at the age of 12 months



Transfer skills at the age of 14 months



## Teacher-Student Learning?



## **Current state of Machine Learning**



## **Retraining from Scratch**

Even when changes are tiny. It is costly, undemocratic and unsustainable.

## **Adaptive Intelligence**

How do brains adapt quickly? What do they optimize and how?

1. Sternberg. A theory of adaptive intelligence and its relation to general intelligence. *Journal of Intelligence (2019)* 

2. Sternberg. Adaptive intelligence. New York: Cambridge University Press (2021)

3. Sternberg. What is intelligence really? the futile search for a holy grail. Learning & Individual Differences (2024)<sub>9</sub>

## **Adaptive Bayesian Intelligence**

- Adaptive Intelligence = Bayesian Computation
- Part 1: Bayesian Learning Rule [1]
  - Foundational way to derive learning-algorithms
  - Application to Deep Learning [2]
- Part 2: Posterior Correction [3]
  - Foundational way to derive adaptation-algorithms
  - Application to continual learning [4-5]
  - But also for LLM merging, Federated Learning etc.
- Adaptive Bayesian Intelligence: A roadmap.
- 1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)
- 2. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)
- 3. Khan. Knowledge Adaptation as Posterior Correction, arXiv (2025)
- 4. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
- 5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

## "The fact that many different approaches point to the same actual algorithm is a major strength of Bayesianity"

## -E. T. Jaynes, discussion of [1]





1. Zellner, Optimal Information Processing and Bayes' Theorem. The American Statistician (1988)

#### Optimization

Gradient Descent Newton's Method Multimodal Optimization

#### Deep-Learning

SGD, RMSprop and Adam Sharpness-Aware Minimization Dropout, STE, Label Smoothing Shampoo....

# Bayesian Learning Rule [1]

#### **Approximate Inference**

Conjugate Bayes Laplace's Method Expectation Maximization Stochastic Variational Inference Variational Message Passing

#### 1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

### **Global-Optimization**

Exponential-Weight Aggregation Natural Evolution Strategy Gaussian Homotopy Smoothed Optimization Weight-perturbed Optimization Stochastic Search (annealing) Stochastic Relaxation

## Variational Formulation of Bayes' Rule

Bayes' Rule: 
$$p_t(\theta) \propto p_0(\theta) \prod_{j=1}^t \text{lik}_j(\theta)$$

Variational Inference to find an approximation  $q_t(\theta)$ 

$$q_{t} = \arg\min_{q \in \mathcal{Q}} \sum_{j=1}^{t} \mathbb{E}_{q} [-\log \operatorname{lik}_{j}] + KL(q \| p_{0})_{\propto e^{-\ell_{0}}}$$
$$= \ell_{j}$$
$$= \arg\min_{q \in \mathcal{Q}} \sum_{j=0}^{t} \mathbb{E}_{q} [\ell_{j}] - \mathcal{H}(q)$$

We will use this variational formulation to discover the inherent Bayesian nature of (non-Bayesian) algorithms.

## **Exponential Family**

Natural  
parametersSufficient  
StatisticsExpectation  
parameters
$$q(\theta) \propto \exp\left[\lambda^{\top}T(\theta)\right]$$
 $\downarrow$  $\downarrow$  $\mathcal{N}(\theta|m, S^{-1}) \propto \exp\left[-\frac{1}{2}(\theta - m)^{\top}S(\theta - m)\right]$   
 $\propto \exp\left[(Sm)^{\top}\theta + \operatorname{Tr}\left(-\frac{S}{2}\theta\theta^{\top}\right)\right]$ Gaussian distribution  
Natural parameters $q(\theta) := \mathcal{N}(\theta|m, S^{-1})$   
 $\lambda := \{Sm, -S/2\}$   
Expectation parameters

Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
 Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 14

## Bayesian Learning Rule (BLR) [1]



Algorithms (such as SGD/Adam) are special cases of BLR obtained by choosing specific exp-family  $q_{\lambda}$  with natural parameter  $\lambda$  and expectation parameter  $\mu$ .

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

## **Deriving Gradient Descent from BLR**

Derived by choosing Gaussian with fixed covariance

Gaussian distribution  $q(\theta) := \mathcal{N}(m, 1)$ Natural parameters  $\lambda := m$ Expectation parameters  $\mu := \mathbb{E}_q[\theta] = m$  $\mathcal{H}(q) := \log(2\pi)/2$ Entropy BLR:  $\lambda \leftarrow \lambda - \rho \nabla_{\mu} \Big( \mathbb{E}_q[\bar{\ell}] - \mathscr{H}(q) \Big)$  $m \leftarrow m - \rho \ \nabla_m \mathbb{E}_a[\mathscr{C}]$  $m \leftarrow m - \rho \, \mathbb{E}_q[\nabla_\theta \mathscr{C}]$ Bonnet's theorem  $m \leftarrow m - \rho \nabla \overline{\ell}(m)$ First-order delta method  $\theta \leftarrow \theta - \rho \,\nabla \, \ell(\theta)$ 

### Bayesian learning rule:

| Learning Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Posterior Approx.        | Natural-Gradient Approx.                                                                                  |     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Optimization Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                           |     |  |  |  |
| Gradient Descent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gaussian (fixed cov.)    | Delta method                                                                                              |     |  |  |  |
| Newton's method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gaussian                 | "                                                                                                         |     |  |  |  |
| $Multimodal\ optimization\ {}_{\rm (New)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mixture of Gaussians     | "                                                                                                         | 3.2 |  |  |  |
| Gradient DescentGaussian (fixed cov.)Delta method1.3Newton's methodGaussian—"—1.3Multimodal optimization (New)Mixture of Gaussians—"—3.2Deep-Learning AlgorithmsStochastic Gradient DescentGaussian (fixed cov.)Delta method, stochastic approx.4.1RMSprop/AdamGaussian (diagonal cov.)Delta method, stochastic approx., square-root scaling, slow-moving scale vectors4.2DropoutMixture of GaussiansDelta method, stochastic approx., square-root scaling, slow-moving scale vectors4.3STEBernoulliDelta method, stochastic approx.4.5Online Gauss-Newton (OGN)Gaussian (diagonal cov.)Gauss-Newton Hessian approx. in<br>Adam & no square-root scaling4.4Nariational OGN (New)—"—Remove delta method from OGN4.4BayesBiNN (New)BernoulliRemove delta method from STE4.5Approx: tract Bayesian Inferetex Algorithms |                          |                                                                                                           |     |  |  |  |
| Stochastic Gradient Descent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gaussian (fixed cov.)    | Delta method, stochastic approx.                                                                          | 4.1 |  |  |  |
| RMSprop/Adam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gaussian (diagonal cov.) | Delta method, stochastic approx.,<br>Hessian approx., square-root scal-<br>ing, slow-moving scale vectors |     |  |  |  |
| Dropout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mixture of Gaussians     | Delta method, stochastic approx., responsibility approx.                                                  |     |  |  |  |
| STE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bernoulli                | Delta method, stochastic approx.                                                                          |     |  |  |  |
| Online Gauss-Newton (OGN) $_{(New)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gaussian (diagonal cov.) | Gauss-Newton Hessian approx. in<br>Adam & no square-root scaling                                          |     |  |  |  |
| Variational OGN $_{(New)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "                        | Remove delta method from OGN 4                                                                            |     |  |  |  |
| $BayesBiNN \ ({\rm New})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bernoulli                | Remove delta method from STE                                                                              |     |  |  |  |
| Approximate Bayesian Inference Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                                                                           |     |  |  |  |
| Conjugate Bayes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Exp-family               | Set learning rate $\rho_t = 1$                                                                            | 5.1 |  |  |  |
| Laplace's method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gaussian                 | Delta method                                                                                              |     |  |  |  |
| Expectation-Maximization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exp-Family + Gaussian    | Delta method for the parameters                                                                           |     |  |  |  |
| Stochastic VI (SVI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exp-family (mean-field)  | Stochastic approx., local $\rho_t = 1$                                                                    |     |  |  |  |
| VMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "                        | $ \rho_t = 1 $ for all nodes                                                                              | 5.3 |  |  |  |
| Non-Conjugate VMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "                        | "                                                                                                         | 5.3 |  |  |  |
| Non-Conjugate VI (New)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mixture of Exp-family    | None                                                                                                      | 5.4 |  |  |  |

#### 1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

## Improving Adam using BLR

RMSprop/Adam

BLR with diagonal-cov Gaussian [4] (Improved Variational Online Newton)

Differences: sampling in line 1, hessian used in line 2 (not  $g^2$ ), h > 0 constraint in line 3, no square-root over h in line 4.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

- 2. Osawa et al. "Practical Deep Learning with Bayesian Principles." NeurIPS (2019).
- 3. Lin et al. "Handling the positive-definite constraints in the BLR." ICML (2020).
- 4. Shen et al. "Variational Learning is Effective for Large Deep Networks." ICML (2024)

## **Training GPT-2 from Scratch using BLR**

Better performance & uncertainty at the same cost [3]



Trained on OpenWebText data (49.2B tokens).

On 773M, we get a gain of 0.5 in perplexity.

On 355M, we get a gain of 0.4 in perplexity.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." *ICML* (2018).

2. Osawa et al. "Practical Deep Learning with Bayesian Principles." NeurIPS (2019).

3. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)

## **Better Calibration**

2% better accuracy over AdamW and 1% over SGD. Better calibration (ECE of 0.022 vs 0.066)



### LoRA Finetuning [1] Llama 2 (7 billion)



1. Bai et al. "Variational Low-Rank Adaptation Using IVON", FITML workshop at NeurIPS 2024

## **Taylor vs Bayes**

Why do we recover optimization algorithm from BLR?



Eq. 18 in Khan and Nielsen (2018), Eq. 59 Khan and Rue (2023), Eq. 3 in Section 2 in Khan (2025)

## **Bayes Generalizes Taylor**

# BLR with full Cov Gaussian:

2nd-ord

$$\sum_{i} \theta^{\mathsf{T}} \mathbb{E}_{q_{old}} [\nabla \mathscr{E}_{i}]$$

$$+ \frac{1}{2} (\theta - m_{old})^{\mathsf{T}} \mathbb{E}_{q_{old}} [\nabla^{2} \mathscr{E}_{i}] (\theta - m_{old})$$
BLR with exponential-family:
$$\sup_{i \in \mathcal{I}} \sup_{i \in \mathcal{I}} (T(\theta)^{\mathsf{T}} \lambda_{old})$$

$$= \exp\left(-\sum_{i=0}^{t} \frac{T(\theta)^{\mathsf{T}} \nabla_{\mu} \mathbb{E}_{q_{old}}[\mathscr{E}_{i}]}{\operatorname{Site} \widehat{\mathscr{E}}_{i|old}(\theta)}\right)$$

Sites are important for adaptation!  $_{\scriptscriptstyle 23}$ 

 $m_{old}$ 

## **Dual-Representation of the BLR**

$$q_{t} \propto \exp(T(\theta)^{\mathsf{T}}\lambda_{t}) = \exp\left(-\sum_{i=0}^{t} T(\theta)^{\mathsf{T}}\nabla_{\mu}\mathbb{E}_{q_{t}}[\mathscr{C}_{i}]\right)$$
  

$$q_{t} \propto \prod_{i=0}^{t} \exp(-\hat{\mathscr{C}}_{i|t}) \qquad \lambda_{t} = \sum_{i=0}^{t} \nabla_{\mu}\mathbb{E}_{q_{t}}[\mathscr{C}_{i}]$$
  
Posterior Sites Natural parameters of the second se

# Natural Gradients are additive (representation theorem). Largest ones are the most influential.

Khan et al. Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models. ICML (2013)
 Khan and Nielsen. Fast yet Simple Natural-Gradient Descent for Variational Inference ... ISITA (2018)
 Khan et al. Approximate Inference Turns Deep Networks into Gaussian Processes. NeurIPS (2019)
 Adam et al. Dual Parameterization of Sparse Variational Gaussian Processes. NearIPS (2021)
 Chang et al. Memory-Based Dual Gaussian Processes for Sequential Learning. ICML (2023)
 Moellenhoff et al. Federated ADMM from Bayesian Duality. arXiv (2025)



The site parameters can be used to generalize Influence Estimators.

Binary classification on the Two Moons dataset.

Big markers with red indicate bigger first derivative for IVON [1]

By Rin Intachuen (RIKEN AIP)

Epoch: 0 1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS, 2023





#### Traffic light (ImageNet)



#### High Influence

What class is this?

Low Influence



### Chihuahua class (ImageNet)



#### High Influence

Low Influence

### **Continual Learning**

Elastic Weight Consolidation Variational Continual Learning Memory Replay Methods Functional Regularization

#### Model Merging

Task Arithmetic Fisher/Hessian-Based Merging Ensembles Methods

## Posterior Correction [1]

#### **Unlearning and Influence**

#### **Student-Teacher Learning**

Knowledge Distillation Learning with Privileged information Incremental SVMs

#### Federated Learning

FedAvg, FedDyn Alternating Direction Method of Multipliers (ADMM) Alternating Minimization Algorithm (AMA) Partition Variational Inference

#### 1. Khan, Knowledge Adaptation as Posterior Correction, arXiv (2025)

Variational Formulation of Online Bayesian Inference

Bayes' Rule: 
$$p_{t+1}(\theta) \propto p_0(\theta) \prod_{j=1}^{t+1} e^{-\ell_j(\theta)} \propto p_t(\theta) e^{-\ell_{t+1}(\theta)}$$

Variational formulation:

Batch: 
$$q_{t+1} = \arg \min_{q} \sum_{j=1}^{t+1} \mathbb{E}_{q}[\ell_{j}] + KL(q||p_{0})$$
  
Online [1]:  $\hat{q}_{t+1} = \arg \min_{q} \mathbb{E}_{q}[\ell_{t+1}] + KL(q||q_{t})$ 

How inaccurate is  $\hat{q}_{t+1}$ ? Can we correct it to exactly recover  $q_{t+1}$ ? This is the goal of posterior correction.

**Continual Learning** 

Model Merging



## Posterior Correction [1]

**Unlearning and Influence** 

Federated Learning





# Correct the Past due to the Interference Created by the Future



Eq. 4 in Khan (2025)

 $\boldsymbol{\Omega}$ 

## **Posterior Correction**

We will use the site functions to correct the posterior!

Batch: 
$$q_{t+1} = \arg \min_{q} \sum_{j=1}^{t+1} \mathbb{E}_{q}[\ell_{j}] + KL(q || p_{0}) \xrightarrow{q_{t}} \overline{\prod_{i=0}^{t} \exp(-\hat{\ell}_{j|t})}$$
  

$$= \arg \min_{q} \mathbb{E}_{q}[\ell_{t+1}] + KL(q || q_{t}) + \sum_{j=0}^{t} \mathbb{E}_{q}[\ell_{j} - \hat{\ell}_{j|t}]$$
Correction  
Online:  $\hat{q}_{t+1} = \arg \min_{q} \mathbb{E}_{q}[\ell_{t+1}] + KL(q || q_{t})$ 

Very simple proof (3 lines). Exact recovery in general!

## **Correction as Prediction Mismatch**

Linear regression with isotropic Gaussian posterior

$$m_{t+1} = \arg \min_{m} \mathbb{E}_{q} [\frac{1}{2} (y_{t+1} - x_{t+1}^{\top} \theta)^{2}] + KL \left[ \mathcal{N}(m, I) \| \mathcal{N}(m_{t}, I) \right]$$

$$+ \sum_{j=1}^{t} \frac{1}{2} (x_{j}^{\top} m_{t} - x_{j}^{\top} m)^{2} + \dots$$

$$+ \sum_{j=1}^{t} \frac{1}{2} (x_{j}^{\top} m_{t} - x_{j}^{\top} m)^{2} + \dots$$
Error due to mean-field is fixed by the correction!
$$\frac{1}{2} (m - m_{t})^{\top} \left( \sum_{j=1}^{t} x_{j} x_{j}^{\top} \right) (m - m_{t})$$

Prediction mismatch is simpler to implement!

## **Knowledge-Adaptation Prior**

Posterior correction with isotropic Gaussian reduces to "prediction or gradient mismatch" (K-priors) [1]

$$\theta_{t+1} = \arg\min_{\theta} \mathscr{C}_{t+1} + \frac{\rho}{2} \|\theta - \theta_t\|^2 + \sum_{j=1}^{l} \mathscr{C}_j \left( \hat{y}_j(\theta_t), \, \hat{y}_j(\theta) \right)$$

# Many adaptation methods reduce this mismatch [2-9] and Posterior Correction generalizes it!

- 1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
- 2. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
- 3. Benjamin et al. Measuring and regularizing networks in function space. ICLR 2019.
- 4. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
- 5. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurIPS 2020.
- 6. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurIPS, 2001.
- 7. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.
- 8. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS'17
- 9. Csató and Opper. Sparse on-line Gaussian processes. Neural computation, 2002.

## From Quick to Slow Adaptation

**Correction as Information Gain** 



## **Quick Adaptation with Compact Memory**

Choose memories where interference is more likely. Small correction  $\implies$  Small memory  $\implies$  Quick adaptation



1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

37

## **Combine Methods to Reduce Correction**

Get 78% accuracy with 7.5% (random) memory



<sup>1.</sup> Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023.

## **Reducing Correction Improves Performance in LLM fine-tuning**



1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

## Summary of Federated Learning, Model Merging, and Memories etc.

Recover 
$$q_{jnt}$$
 from  $q_1$  and  $q_2$   
 $q_{jnt} = \arg\min_{q} KL(q || q_1 q_2) + \sum_{j=1}^{2} \mathbb{E}_q[\ell_j - \hat{\ell}_{j|j}]$ 
 $\mathcal{D}_1 \qquad q_{jnt} \qquad \mathcal{D}_2$ 

By choosing different q, we get different strategies (better q gives better merging) [1,2]. Same is true for federated learning [3,4]. All of them will benefit from compact memories designed to reduce corrections [5].

- 1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
- 2. Monzon et al. How to Weight Multitask Finetuning? Fast Previews via Bayesian Model-Merging, 2024
- 3. Swaroop, Khan, Doshi, Connecting Federated ADMM to Bayes, ICLR 2025
- 4. Moellenhoff et al. Federated ADMM from Bayes Duality, arXiv, 2025
- 5. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS (2023)

### ADMM as a special case of Bayes (Dual)



Algorithm 1 BayesADMM (Fig. 2b) for Gaussians with diagonal covariance. Additional steps when compared to FederatedADMM are highlighted in red. Implementation details are in App. D.

**Hyperparameters:** Prior precision  $\delta > 0$ , step-sizes  $\rho > 0$  and  $\gamma > 0$ . **Initialize:**  $\mathbf{v}_k \leftarrow 0$ ,  $\mathbf{u}_k \leftarrow 0$ ,  $\mathbf{\bar{m}} \leftarrow 0$ ,  $\mathbf{\bar{s}} \leftarrow \delta$ ,  $\alpha \leftarrow 1/(1 + \rho K)$ .

- 1: while not converged do
- 2: Broadcast  $\bar{\mathbf{m}}$  and  $\bar{\mathbf{s}}$  to all clients.
- 3: for each client  $1, \ldots, K$  in parallel do
- 4: Local training on  $\ell_k(\boldsymbol{\theta}) + \boldsymbol{\theta}^\top \mathbf{v}_k \frac{1}{2} \boldsymbol{\theta}^\top (\mathbf{u}_k \boldsymbol{\theta}) + \frac{\rho}{2} \|\boldsymbol{\theta} \bar{\mathbf{m}}\|_{\bar{\mathbf{s}}}^2 > \mathbf{V}_k$ 
  - ▷ Using IVON [53]

> An additional dual variable.

- 5:  $\mathbf{v}_k \leftarrow \mathbf{v}_k + \gamma \left( \mathbf{s}_k \mathbf{m}_k \bar{\mathbf{s}} \bar{\mathbf{m}} \right)$
- 6:  $\mathbf{u}_k \leftarrow \mathbf{u}_k + \gamma \left( \mathbf{s}_k \bar{\mathbf{s}} \right)$
- 7: end for
- 8: Gather  $\mathbf{m}_k$ ,  $\mathbf{v}_k$  and  $\mathbf{s}_k$ ,  $\mathbf{u}_k$  from all clients.
- 9:  $\bar{\mathbf{m}} \leftarrow (1 \alpha) \operatorname{Mean}(\mathbf{s}_{1:K}\mathbf{m}_{1:K}) + \alpha \operatorname{Sum}(\mathbf{v}_{1:K})$
- 10:  $\bar{\mathbf{s}} \leftarrow (1 \alpha) \operatorname{Mean}(\mathbf{s}_{1:K}) + \alpha \left[ \delta \mathbf{1} + \operatorname{Sum}(\mathbf{u}_{1:K}) \right]$

```
11: \bar{\mathbf{m}} \leftarrow \bar{\mathbf{m}}/\bar{\mathbf{s}}
```

12: end while

 $\triangleright$  Two additional steps for precision  $\bar{s}$ 

| Method      | <b>Test accur</b><br>10 rounds                                                                                                                                                  | acy († largei<br>25 rounds                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>is better)</b><br>50 rounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FedAvg      | $72.3{\pm}0.4$                                                                                                                                                                  | 77.7±0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.0±0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FedProx     | $72.2 \pm 0.3$                                                                                                                                                                  | $77.4 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $80.3 {\pm} 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FedDyn      | $75.3 {\pm} 0.8$                                                                                                                                                                | $77.5 {\pm} 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $78.2{\pm}0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FedLap      | $72.1 \pm 0.2$                                                                                                                                                                  | $77.1 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $80.2{\pm}0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FedLap-Cov  | $75.0{\pm}0.6$                                                                                                                                                                  | $79.8 {\pm} 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $81.8{\pm}0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BayesADMM@m | 80.4±0.2                                                                                                                                                                        | 83.1±0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.4±+6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BayesADMM   | <b>80.6</b> ±0.2                                                                                                                                                                | <b>83.5</b> ±0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>84.1</b> ∃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FedAvg      | $70.4{\pm}0.9$                                                                                                                                                                  | 74.3±0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.0±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FedProx     | $69.9 {\pm} 0.4$                                                                                                                                                                | $74.7 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $76.9 {\pm} 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FedDyn      | $73.0 {\pm} 0.6$                                                                                                                                                                | $74.6 {\pm} 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $74.6 {\pm} 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FedLap      | $71.3 {\pm} 0.9$                                                                                                                                                                | $74.3 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $77.6 {\pm} 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FedLap-Cov  | $74.6 {\pm} 0.7$                                                                                                                                                                | $78.3 {\pm} 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $80.5 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BayesADMM@m | <b>77.0</b> ±0.8                                                                                                                                                                | <b>81.4</b> ±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>82.1</b> ∃ <mark>+8%</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BayesADMM   | <b>77.0</b> ±0.8                                                                                                                                                                | <b>81.5</b> ±0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>82.3</b> ∃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FedAvg      | 62.8±3.1                                                                                                                                                                        | 65.4±1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.0±1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FedProx     | <b>64.3</b> ±2.0                                                                                                                                                                | $65.9 \pm 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66.3±1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FedDyn      | 63.6±1.1                                                                                                                                                                        | 64.7±0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.4±1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FedLap      | $60.2 {\pm} 2.4$                                                                                                                                                                | $66.4{\pm}1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $66.5 \pm 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FedLap-Cov  | $58.4{\pm}2.4$                                                                                                                                                                  | $65.4{\pm}1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.5±1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BayesADMM@m | <b>63.8</b> ±1.4                                                                                                                                                                | <b>69.5</b> ±0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.2∃ <mark>+5%</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BayesADMM   | <b>63.8</b> ±1.4                                                                                                                                                                | <b>69.5</b> ±0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>70.3</b> ∃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Method<br>FedAvg<br>FedProx<br>FedDyn<br>FedLap-Cov<br>BayesADMM@m<br>BayesADMM@m<br>FedProx<br>FedDyn<br>FedLap-Cov<br>BayesADMM@m<br>BayesADMM@m<br>BayesADMM@m<br>FedLap-Cov | Method10 roundsFedAvg $72.3\pm0.4$ FedProx $72.2\pm0.3$ FedDyn $75.3\pm0.8$ FedLap $72.1\pm0.2$ FedLap-Cov $75.0\pm0.6$ BayesADMM@m $80.4\pm0.2$ BayesADMM $80.6\pm0.2$ FedAvg $70.4\pm0.9$ FedProx $69.9\pm0.4$ FedDyn $73.0\pm0.6$ FedLap-Cov $74.6\pm0.7$ BayesADMM@m $77.0\pm0.8$ BayesADMM $77.0\pm0.8$ FedAvg $62.8\pm3.1$ FedAvg $62.8\pm3.1$ FedProx $64.3\pm2.0$ FedDyn $63.6\pm1.1$ FedLap-Cov $58.4\pm2.4$ BayesADMM@m $63.8\pm1.4$ BayesADMM@m $63.8\pm1.4$ | Method10 rounds25 roundsFedAvg $72.3\pm0.4$ $77.7\pm0.3$ FedProx $72.2\pm0.3$ $77.4\pm0.1$ FedDyn $75.3\pm0.8$ $77.5\pm0.8$ FedLap $72.1\pm0.2$ $77.1\pm0.1$ FedLap-Cov $75.0\pm0.6$ $79.8\pm0.4$ BayesADMM@m $80.4\pm0.2$ $83.1\pm0.1$ BayesADMM $80.6\pm0.2$ $83.5\pm0.1$ FedAvg $70.4\pm0.9$ $74.3\pm0.5$ FedProx $69.9\pm0.4$ $74.7\pm0.6$ FedDyn $73.0\pm0.6$ $74.6\pm0.4$ FedLap-Cov $74.6\pm0.7$ $78.3\pm1.0$ BayesADMM@m $77.0\pm0.8$ $81.4\pm0.4$ BayesADMM $77.0\pm0.8$ $81.5\pm0.5$ FedAvg $62.8\pm3.1$ $65.4\pm1.8$ FedProx $64.3\pm2.0$ $65.9\pm1.6$ FedDyn $63.6\pm1.1$ $64.7\pm0.6$ FedLap-Cov $58.4\pm2.4$ $65.4\pm1.1$ BayesADMM@m $63.8\pm1.4$ $69.5\pm0.8$ BayesADMM $63.8\pm1.4$ $69.5\pm0.8$ |

## **Adaptive Bayesian Intelligence**

- Adaptive Intelligence = Bayesian Computation
- Part 1: Bayesian Learning Rule [1]
  - Foundational way to derive learning-algorithms
  - Application to Deep Learning [2]
- Part 2: Posterior Correction [3]
  - Foundational way to derive adaptation-algorithms
  - Application to continual learning [4-5]
  - But also for LLM merging, Federated Learning etc.
- Adaptive Bayesian Intelligence: A roadmap.
- 1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023)
- 2. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)
- 3. Khan. Knowledge Adaptation as Posterior Correction, arXiv (2025)
- 4. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
- 5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

## **Questions for the future**

- What should the algorithm remember?
- And what new experiences should it seek?
- Memory should be chosen to minimize the corrections that may arise in the future.
- New experiences should be chosen to enable easyenough corrections (not too daunting for the learner)
- Future is unknown but the algorithm has the freedom to explore by "fixing the past & choosing the future"



## **The Bayes-Duality Project**

Toward AI that learns adaptively, robustly, and continuously, like humans



Emtiyaz Khan

Research director (Japan side)

Approx-Bayes team at RIKEN-AIP and OIST Julyan Arbel

Research director (France side)

Statify-team, Inria Grenoble Rhône-Alpes Kenichi Bannai

Co-PI (Japan side)

Math-Science Team at RIKEN-AIP and Keio University Rio Yokota

(Japan side)

Tokyo Institute of Technology

Received total funding of JPY 220M + EUR 500K through the CREST-ANR grant! Thanks to JST for their generous funding!

## Bayes-Duality Workshop (June 25-27, 2025)

#### https://bayesduality.github.io/workshop\_2025.html



Abeba Birhane

Trinity College Dublin, Ireland







André Martins Instituto Superior

Tecnico, Portugal

Razvan Pascanu



Deepmind, UK

Marcus Rohrbach

TU Darmstadt, Germany



Mark van der Wilk

University of Oxford, UK



#### David Rügamer

Ludwig-Maximilians-Universität München, Germany Diverse topics: Bayes, Optimization, Information Geometry, Continual Learning, Federated Learning, Active learning, RL, Model understanding, Data Attributions, LLMs, etc.

## **Adaptive Bayesian Intelligence Team**

#### https://team-approx-bayes.github.io/



**Emtiyaz Khan** Team Leader



Thomas Möllenhoff **Research Scientist** 



Hugo Monzón Special Postdoctoral Maldonado Postdoctoral Researcher



**Christopher Johannes** Anders Postdoctoral Researcher



Yohan Jung Postdoctoral Researcher



Part-Time Student

The University of

Tokyo

Bai Cong Part-Time Student Tokvo Institute of Technology



Eiki Shimizu Part-Time Student Institute of Statistical Mathematics



Giulia Lanzillotta Intern ETH Zurich



Researcher

RIKEN BDR

Adrian R. Minut Intern Sapienza, University of Rome



Florian Seligmann Intern Karlsruhe Institute of Technology



Guiomar Pescador Barrios Intern Imperial College London



Henrique Da Silva Gameiro Intern EPFL. Switzerland



Visiting Scientist

University of



Pierre Alguier Visiting Scientist ESSEC Business Winsconsin-Madison School



**Geoffrey Wolfer** Visiting Scientist Waseda University



**Rio Yokota** Visiting Scientist Tokvo Institute of Technology



Remote Collaborator University of Amsterdam

#### And many of our collaborators!

