
How to Build Machines
That Adapt Quickly

Mohammad Emtiyaz Khan
RIKEN Center for AI Project, Tokyo

http://emtiyaz.github.io

1
Summary of recent research at https://emtiyaz.github.io/papers/symposium_2023.pdf
Slides available at https://emtiyaz.github.io/

Presentation at the Conference on Lifelong Learning Agents 2024,
July 30, 2024

https://emtiyaz.github.io/papers/symposium_2023.pdf
https://emtiyaz.github.io/

Continual Lifelong Learning

Keep learning for a long time by observing,
interacting, adapting, exploring the environment

2

Human Learning at
the age of 6 months.

3

4

Converged at the
age of 12 months

5

Transfer
skills

at the age
of 14

months

Current state of ML

6h"ps://www.youtube.com/watch?v=TxobtWAFh8o The video is from 2017

https://www.youtube.com/watch?v=TxobtWAFh8o

Continual Lifelong
Adaptation

For sustainable, reliable, transparent AI

7

What are (some) Fundamental Principles
of Continual Lifelong Learning?

Connecting, combining, and
improving existing methods

8

Outline of the Talk

• Distributed information over time and space [1] requires
dealing with Interference between the past and future

– “Gradient mismatch” [2] & “reconstruction” [3-5]
• Quick adaptation is possible when mismatches are

caused by just a few examples
– “Memorable Past” or Memory of models [4, 6]

• The difficulty of lifelong learning reduces to a faithful
representation of the past

9

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
3. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020
5. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).
6. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS (2023)

Results on ImageNet with ResNet-18

101. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR2023(CoLLAs 2024)

Published in Transactions on Machine Learning Research (11/2023)

0.1% 0.5% 2.0% 7.5%

Memory size (% of data)

20%

40%

60%

80%

Te
st

ac
c.

(a
vg

.o
ve

rt
as

ks
) Batch Joint

Batch Separate

Online EWC

FR

EWC+FR+Replay

1 2 3 4 5 6 7 8 9 10

Number of tasks

�15%

�10%

�5%

0%

Fo
rg

et
tin

g
(a

vg
.o

ve
rt

as
ks

) Batch Joint

EWC+FR+Replay

FR

Online EWC

Figure 4: Results on ImageNet-1000. EWC+FR+Replay performs favorably across a range of memory
sizes (left; x-axis log-scaled), and su�ers less from forgetting (relative to Batch Joint) with an increasing
number of tasks, here exemplary shown at the largest memory size of 7.5% (right).

2) weight-regularization – LwF (Li & Hoiem, 2017), EBLL (Rannen et al., 2017), EWC (Kirkpatrick et al.,
2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2018), mode-IMM (Lee et al., 2017), and 3) architectural
– PackNet (Mallya & Lazebnik, 2018), HAT (Serra et al., 2018) (Fig. 3 right).5

6.4 Results on ImageNet-1000

Setup. We consider the ImageNet-1000 benchmark proposed by Rebu� et al. (2017), which randomly splits
the full ImageNet dataset (Deng et al., 2009) of ≥1.2M data points into a sequence of 10 tasks with 100
classes and ≥120K data points each. Following Rebu� et al. (2017), we use a ResNet-18 with ≥11M model
parameters. For training on each task, we use the ImageNet reference training pipeline (with 40 epoch
configuration) of the FFCV library (Leclerc et al., 2022).6

Results. Fig. 4 shows our results on ImageNet-1000. We consider memory sizes between 200 and 10K per
task, where the latter amounts to 7.5% of the entire data. The observed trends qualitatively match those
from previous experiments. In particular, FR underperforms for small memory sizes, and while it improves
with increasing memory, it peaks at a 3.8% memory and then even starts declining. We hypothesize that this
is again due to accumulation of the NN error, which might become more severe with a larger memory as more
data points can contribute to the error. EWC+FR again improves accuracy for small memories, but does not
help for large memories. Finally, correcting for the NN error by additionally including the experience replay
term (EWC+FR+Replay) substantially boosts performance also at the large 7.5% memory. EWC+FR+Replay

thus combines the benefits of both error correction terms to perform well across all memory sizes, achieving
> 80% of the batch performance with a memory of < 10% of the past data. It also again su�ers less from
forgetting along the task sequence, demonstrating that it better mitigates error accumulation.

7 Conclusion

In this work, we proposed to address the continual learning problem in a theoretically-grounded way by
explicitly approximating the optimal model obtained via batch-training on all tasks jointly. To this end,
we developed EWC+FR+Replay, a new continual learning method which e�ciently re-uses prior knowledge
to reconstruct the gradients of the past training objective as faithfully as possible. To achieve this, our
method combines principles from function-regularization, weight-regularization, and experience replay to
reduce the gradient-reconstruction error. Empirically, we demonstrated the e�ectiveness and scalability of
EWC+FR+Replay across di�erent memory sizes on common task-incremental continual learning benchmarks.
In particular, we showed that our proposed EWC+FR+Replay approach can be less susceptible to catastrophic

5Results are from Delange et al. (2021); their total memory sizes [4500, 9000] correspond to [5.6%, 11.2%] of the data.
6For all details of the training procedure, see https://github.com/libffcv/ffcv-imagenet/.

11

Obtain 78% accuracy with just 7.5% data by
combining EWC, Functional Reg. & Replay.

See the poster
#J6 today.

Distributed Information Processing
over Time and Space

11

For such problems, we must be able to distinguish
the new information apart from the old information.

θ1 θ2

𝒟2𝒟1

θ1+2

Federated Learning
or Model Merging

Note: These are not graphical models. Arrows represent the “flow” of information

θ1 θ1+2

𝒟2𝒟1

θ1+2+3

𝒟3

Continual Learning or
Sequential Learning

The Intuition

12

If and are different from each other, then
 should also be different from and .

𝒟1 𝒟2
θ1+2 θ1 θ2

θ1+2 − θ1 fi(θ1+2) − fi(θ1)
I will present a simpler way to quantify in
terms of “gradient mismatch”, but remember that
there is always an underlying Bayesian principle [3]

θ1+2 − θ1

KL(p1+2∥p1)

1. Jaynes, Information theory and statistical mechanics, 1957
2. Zellner, Optimal information processing and Bayes’s theorem, The American Statistician, 1988.
3. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

The Bayesian way [1,2] is to define “new
information” by measuring the gain/change in the
posterior (or in or its predictions)θ1 fi(θ1)

Model Merging

Connecting inaccuracy of model
merging to gradient mismatch

131. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

Overview

� Goal: Introduce a general framework for model merging as a method to adapt models

Nico Daheim Thomas Möllenhoff Edoardo M. Ponti Iryna Gurevych M. Emtiyaz Khan

Model Merging by Uncertainty-Based Gradient Matching, ICLR ����

May ��, ���� | Computer Science Department | TU Darmstadt | Nico Daheim | �

Nico Daheim
(TUD)

Thomas Moellenhoff
(RIKEN)

Model Merging

14

Given fine-tuned on and
 fine-tuned on , merge

them (to estimate).

θ1 𝒟1
θ2 𝒟2

θ1+2

θ1+2 − (α1θ1 + α2θ2)

For simplicity, I will assume . For the
full version, see our paper [2].

α1 = α2 = 1

1. Wortsman et al. Robust fine-tuning of zero-shot models, CVPR 2022
2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

The quality depends on the difference:

θ1 θ2

𝒟2𝒟1

θ1+2

Simplest strategy is to use for scalars
, [1].

α1θ1 + α2θ2
α1 α2

A (dual) View: Parameters as Gradients

15

θ1 = arg min
θ

ℓ1(θ) +
1
2

∥θ∥2 ⟹ 0 = ∇ℓ1(θ1) + θ1

θ2 = arg min
θ

ℓ2(θ) +
1
2

∥θ∥2

θ1+2 = arg min
θ

ℓ1(θ) + ℓ2(θ) +
1
2

∥θ∥2

⟹ θ1 = − ∇ℓ1(θ1)

⟹ θ2 = − ∇ℓ2(θ2)

In other words, parameters are gradients.

⟹ θ1+2 = − ∇ℓ1(θ1+2) − ∇ℓ2(θ1+2)

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

Parameter Change as Gradient Mismatch

16

⟹ θ1+2 − (θ1 + θ2)

θ1 = − ∇ℓ1(θ1)

θ2 = − ∇ℓ2(θ2)

θ1+2 = − ∇ℓ1(θ1+2) − ∇ℓ2(θ1+2)

Subtract the last two equations
from the first one.

= − [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] − [∇ℓ2(θ1+2) − ∇ℓ2(θ2)]
Gradient Mismatch on 𝒟1

New Old

Gradient Mismatch on 𝒟2

New Old

Gradient mismatch among new and old parameters!
1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

Gradient Mismatch

17

θ1

θ1+2

∇ℓ1(θ1+2) − ∇ℓ1(θ1)

𝒟1

Reducing the Mismatch

18

θ1+2 − (θ1 + θ2)

≈ − H1 ⋅ (θ1+2−θ1)

⟹ θ1+2 ≈
H1 + I

H1 + H2 + I
θ1 +

H2 + I
H1 + H2 + I

θ2

Hessian-based merging [2] reduces mismatch. More
such results in [1], including task-arithmetic [3]

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
2. Matena and Raffel. Merging models with Fisher-weighted averaging, NeurIPS 2022
3. Ilharco et al. Editing models with task arithmetic. ICLR 2023

= − [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] − [∇ℓ2(θ1+2) − ∇ℓ2(θ2)]

∇ℓ1(θ1+2) ≈ ∇ℓ1(θ1) + H1 ⋅ (θ1+2 − θ1)

−H2 ⋅ (θ1+2−θ2)

Minimizing Gradient Mismatch
Reduces Test Error

191. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

Preprint. Under review.

��1 �2

✓target

✓merged

✓1✓2

� =
2P

t=1
r¯̀

t(✓target)�r¯̀
t(✓t)| {z }

Gradient Mismatch

⇡
2P

t=1
Ht�t

0.2 0.4

2

4

6

1

2

3

4

5

1 2

34

5

Gradient mismatch

D
iff

er
en

ce
in

te
st

er
ro

r Task Arithmetic

Ours

Figure 1: The left panel illustrates our approach. We connect the error � of the merged model ✓merged
to the gradient mismatch over losses ¯̀

t and propose a new method that reduces the mismatch by
using the Hessian Ht and error �t of the individual models ✓t. The right panel shows an example of
adding datasets to RoBERTa trained on IMDB. We clearly see that reducing mismatch also reduces
test error of task arithmetic. We consider 5 datasets, each indicated by a number on the markers.

can leverage them to further improve model merging. Empirical results on LLMs and ViTs show
consistent improvements, both in terms of performance and robustness to hyperparameters.

2 MODEL MERGING BY PARAMETER AVERAGING

We consider merging multiple models that share the same architecture but are trained on different
datasets, for example, by fine-tuning a large pretrained model. We denote each of the T > 1 models
by its parameter vector ✓t 2 Rd. Throughout this section, we will use an LLM, denoted by ✓LLM,
but the results straightforwardly apply to other pretrained models. Given ✓LLM and different ✓t, our
goal is to understand the inaccuracies in existing parameter-averaging methods and improve them.

We focus on the following simple weighted-averaging scheme: ✓̄ = S0 ✓LLM +
PT

t=1 St ✓t, where
✓̄ is the merged model obtained with scaling matrices St 2 Rd⇥d for t = 0, 1, . . . , T . Since the
dimension d is often large, simple choices of St are used in practice. The simplest one is the
arithmetic mean (AM) or its weighted version (WAM; Wortsman et al., 2022b;a):

✓̄AM =
1

T

TX

t=1

✓t, ✓̄WAM = ↵0✓LLM +
TX

t=1

↵t✓t, (1)

where ↵t � 0. For large models, different parameters have different scaling and it is better to take
this into account, for example, by using the Fisher matrix Ft:

✓̄FA =
TX

t=1

St✓t, where St = ↵tF̄
�1

Ft with F̄ =
TX

t=1

↵tFt, for all t � 1, (2)

giving rise to ‘Fisher Averaging’ (FA). We could similarly include S0 by using the Fisher F0 of
the LLM. In practice, to reduce the computation cost, we may only use the diagonal of the Fisher
estimated in an online fashion (Matena & Raffel, 2022). This is similar to strategies in continual
learning (Kirkpatrick et al., 2017) where the choice of Fisher is justified through Bayesian updating
Huszár (2018). However, such connections are not yet explored or exploited for model merging.

Using Fisher should improve things a bit but the extent of improvement is unclear. A recent work
by Jin et al. (2023) uses insights from linear models to justify some of these choices, but such
justification may not hold for nonlinear models. In general, it is also not clear how Fisher-averaging
takes care of the commonalities between the fine-tuning ✓t of the LLM ✓LLM. Should we include
F0 or not, and how should it be combined with the other Ft so as to avoid double counting of
information in the models? The current practice is to simply tune ↵t on a validation set which is one
way to make up for the errors, but this can quickly become expensive as T increases.

Recently, Ilharco et al. (2023) proposed to subtract the contribution of ✓LLM with the follow-
ing simple ‘task arithmetic’ (TA): ✓̄TA = ✓LLM +

PT
t=1 ↵t(✓t � ✓LLM). Subtracting ✓LLM

2

RoBERTa
on IMDB

br
ut

e-
fo

rc
e

re
tra

in
in

g

Estimate by Gradient Mismatch

Continual Learning

Gradient mismatch and its
reconstruction

20

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
2. Daxberger, Swaroop, Osawa, Yokota, Turner, Hernandez-Lobato, Khan, Improving CL by Accurate

Gradient Reconstruction of the Past, TMLR (2023) & CoLLAs (2024).

Siddharth Swaroop
(U Cambridge,

Now in Harvard U)

Looking for a faculty
position in near

future.

θ1 θ1+2

𝒟2𝒟1

θ1+2+3

𝒟3

Gradient Mismatch in CL

21

⟹ θ1+2 − θ1

θ1 = − ∇ℓ1(θ1)

θ1+2 = − ∇ℓ1(θ1+2) − ∇ℓ2(θ1+2)

Subtract the 2nd eq. from the 1st eq.

= − [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] − ∇ℓ2(θ1+2)
Gradient Mismatch on 𝒟1

New Old

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).

New loss

Gradient Mismatch on the past data.

Knowledge-Adaptation Prior [1]

22

A wide-variety of adaptation methods can be seen
as using different choices of D [2-9]

θ1+2 = arg min
θ

D(θ∥θ1) + ℓ2(θ)
= ∇D(θ1+2∥θ1)

Find a regularizer that reconstructs the mismatch

Then, solve

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
2. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
3. Benjamin et al. Measuring and regularizing networks in function space. ICLR 2019.
4. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
5. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurIPS 2020.
6. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurIPS, 2001.
7. Vapnik and Izmailov. Learning using privileged information: similarity control and .… JMLR, 2015.
8. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS’17
9. Csató and Opper. Sparse on-line Gaussian processes. Neural computation, 2002.

θ1+2 − θ1 + [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] + ∇ℓ2(θ1+2) = 0

EWC as K-Priors

231. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.

≈ H1(θ1+2 − θ1)

⟹ (I + H1)(θ1+2 − θ1) + ∇ℓ2(θ1+2) = 0

⟹ θ1+2 ≈ arg min
θ

1
2

∥θ − θ1∥2
H1+I +ℓ2(θ)

(θ1+2 − θ1) + [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] + ∇ℓ2(θ1+2) = 0

EWC reduces the mismatch by “reusing” which
is different from Experience Replay

θ1

θ1+2 ≈ arg min
θ

̂ℓ1(θ)+ℓ2(θ)

Functional Regularizer (FR) as K-priors

24

(θ1+2 − θ1) + [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] + ∇ℓ2(θ1+2) = 0

For certain losses, gradient mismatch is equivalent
to regularizing model “outputs/predictions”.

∇ℓ(θ) = ∑
i

ϕi [fi(θ) − yi]
where with being a feature vector.fi(θ) = ϕ⊤

i θ ϕi

∑
i∈𝒟1

ϕi [fi(θ1+2) − fi(θ1)]
⟹ θ1+2 = arg min

θ
∥θ − θ1∥2 + ∑

i∈𝒟1

∥fi(θ) − fi(θ1)∥2 + ℓ2(θ)

1. Benjamin et al. Measuring and regularizing networks in function space. ICLR 2019.
2. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
3. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurIPS 2020.

ℓ(θ) = ∑
i

[fi(θ) − yi]2/2

Knowledge Transfer in SVMs

25

1. Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 2007.
2. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurIPS, 2001.
3. Vapnik and Izmailov. Learning using privileged information: similarity control and .… JMLR, 2015.
4. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS’17
5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

It is also possible to rewrite entirely in function-
space, but this is only exact for convex cases [1]

arg min
θ

∥θ − θ1∥2 + ∥Φθ − Φθ1∥2 + ℓ2(θ)

= arg max
α

∥α − α1∥2
ΦΦ⊤+I + ℓ*2 (α)

where is the dual variable; see [2-5].α
Beware of the fully “function-space” methods; they
assume linearity and ignore “label noise”!!!

How to Fix the FR methods

26

= ∑
i

∇fi(θ1)ei(θ1) − ∇fi(θ1+2)[fi(θ1+2) − yi]

∇ℓ(θ) = ∑
i

∇fi(θ)[fi(θ) − yi]

= ∑
i

[∇fi(θ1) − ∇fi(θ1+2)] ei(θ1) − ∇fi(θ1+2)[fi(θ1+2) − fi(θ1)]

Functional regularizationReplay

The problem: for neural-nets, features depend on θ

But, we can fix this issue by using Replay [1]

1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).

:= ei(θ)

∇ℓ1(θ1) − ∇ℓ1(θ1+2)
= ∑

i

∇fi(θ1)ei(θ1) − ∇fi(θ1+2)[fi(θ1+2)−fi(θ1) + fi(θ1)−yi]= ∑
i

∇fi(θ1)ei(θ1) − ∇fi(θ1+2)[fi(θ1+2)−fi(θ1) + ei(θ1)]

= ∇ℓ1(θ1) − ∑
i

∇fi(θ1+2)ei(θ1) − ∇fi(θ1+2)[fi(θ1+2) − fi(θ1)]= − θ1 − ∑
i

∇fi(θ1+2)ei(θ1) − ∇fi(θ1+2)[fi(θ1+2) − fi(θ1)]

Summary

• Gradient mismatch can be reduced
– Weight regularizers (e.g., EWC)
– Functional regularizers (& dual versions)
– Replay.

• They are complementary and do different things.
– Uncertainty in weights, predictions, & labels.

• Optimal combination depends on the task
• Are there general principles for their combination?

– Look deeper into the sources of mismatch

27

Memory

How to choose the examples to
regularize appropriately? How to

represent the past when the future is
unknown?

281. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS, 2023

An Early Idea

29

Task 1

Task 2
Task 3

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurIPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Class 0

Class 1

Choose the memory at the boundary

30

Less Memorable More memorable

Step A: Convert DNN to
GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Step A: Convert DNN to
GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Step A: Convert DNN to GP functional prior Step B: Find Memorable Past

Old weights

Old data

New weights
Step A: Convert DNN to

GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Optimal weights

FROMP

A

Weight-space

Globalminimum

B

C

Functional prior

Old task
data

Choose memory
Memorable

examples

After training

New task
data

A

Weight-space

Globalminimum

B

C

Functional prior

Old task
data

Choose memory
Memorable

examples

After training

New task
data

Step C: Train weights with functional regularisation of memorable past

New data

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

w1
<latexit sha1_base64="D0NPEnAnvNpV3Ack4EsD90UvfkU=">AAAB6nicdVDLSsNAFJ34rPVV60ZwM7QIrkLSl1kW7MJlRfuANpTJdNIOnUzCzEQpoZ/gxoUibsW/8A9cufNvnKYKKnrgwuGce7n3Hi9iVCrLejeWlldW19YzG9nNre2d3dxevi3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb3I69ztXREga8ks1jYgboBGnPsVIaeniemAPckXLrNlOpepATcpWrWKnxHFKZWibVopi/eD1Jd94LjQHubf+MMRxQLjCDEnZs61IuQkSimJGZtl+LEmE8ASNSE9TjgIi3SQ9dQaPtDKEfih0cQVT9ftEggIpp4GnOwOkxvK3Nxf/8nqx8h03oTyKFeF4sciPGVQhnP8Nh1QQrNhUE4QF1bdCPEYCYaXTyeoQvj6F/5N2ybTLZvVcp9EAC2TAISiAY2CDE1AHZ6AJWgCDEbgBd+DeYMat8WA8LlqXjM+ZffADxtMHixqQ9Q==</latexit>

w2
<latexit sha1_base64="G+omeDdIM0oZQp/LDKzrPBM1/d0=">AAAB6nicdVDLSsNAFJ34rPVV60ZwM7QIrkLSl1kW7MJlRfuANpTJdNIOnUzCzEQpoZ/gxoUibsW/8A9cufNvnKYKKnrgwuGce7n3Hi9iVCrLejeWlldW19YzG9nNre2d3dxevi3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb3I69ztXREga8ks1jYgboBGnPsVIaenielAa5IqWWbOdStWBmpStWsVOieOUytA2rRTF+sHrS77xXGgOcm/9YYjjgHCFGZKyZ1uRchMkFMWMzLL9WJII4QkakZ6mHAVEukl66gweaWUI/VDo4gqm6veJBAVSTgNPdwZIjeVvby7+5fVi5TtuQnkUK8LxYpEfM6hCOP8bDqkgWLGpJggLqm+FeIwEwkqnk9UhfH0K/yftkmmXzeq5TqMBFsiAQ1AAx8AGJ6AOzkATtAAGI3AD7sC9wYxb48F4XLQuGZ8z++AHjKcPjJ6Q9g==</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.

2

Step A: Convert DNN to
GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Step A: Convert DNN to
GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Step A: Convert DNN to GP functional prior Step B: Find Memorable Past

Old weights

Old data

New weights
Step A: Convert DNN to

GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Optimal weights

FROMP

A

Weight-space

Globalminimum

B

C

Functional prior

Old task
data

Choose memory
Memorable

examples

After training

New task
data

A

Weight-space

Globalminimum

B

C

Functional prior

Old task
data

Choose memory
Memorable

examples

After training

New task
data

Step C: Train weights with functional regularisation of memorable past

New data

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

w1
<latexit sha1_base64="D0NPEnAnvNpV3Ack4EsD90UvfkU=">AAAB6nicdVDLSsNAFJ34rPVV60ZwM7QIrkLSl1kW7MJlRfuANpTJdNIOnUzCzEQpoZ/gxoUibsW/8A9cufNvnKYKKnrgwuGce7n3Hi9iVCrLejeWlldW19YzG9nNre2d3dxevi3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb3I69ztXREga8ks1jYgboBGnPsVIaeniemAPckXLrNlOpepATcpWrWKnxHFKZWibVopi/eD1Jd94LjQHubf+MMRxQLjCDEnZs61IuQkSimJGZtl+LEmE8ASNSE9TjgIi3SQ9dQaPtDKEfih0cQVT9ftEggIpp4GnOwOkxvK3Nxf/8nqx8h03oTyKFeF4sciPGVQhnP8Nh1QQrNhUE4QF1bdCPEYCYaXTyeoQvj6F/5N2ybTLZvVcp9EAC2TAISiAY2CDE1AHZ6AJWgCDEbgBd+DeYMat8WA8LlqXjM+ZffADxtMHixqQ9Q==</latexit>

w2
<latexit sha1_base64="G+omeDdIM0oZQp/LDKzrPBM1/d0=">AAAB6nicdVDLSsNAFJ34rPVV60ZwM7QIrkLSl1kW7MJlRfuANpTJdNIOnUzCzEQpoZ/gxoUibsW/8A9cufNvnKYKKnrgwuGce7n3Hi9iVCrLejeWlldW19YzG9nNre2d3dxevi3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb3I69ztXREga8ks1jYgboBGnPsVIaenielAa5IqWWbOdStWBmpStWsVOieOUytA2rRTF+sHrS77xXGgOcm/9YYjjgHCFGZKyZ1uRchMkFMWMzLL9WJII4QkakZ6mHAVEukl66gweaWUI/VDo4gqm6veJBAVSTgNPdwZIjeVvby7+5fVi5TtuQnkUK8LxYpEfM6hCOP8bDqkgWLGpJggLqm+FeIwEwkqnk9UhfH0K/yftkmmXzeq5TqMBFsiAQ1AAx8AGJ6AOzkATtAAGI3AD7sC9wYxb48F4XLQuGZ8z++AHjKcPjJ6Q9g==</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.

2

≈ ∑
i

ϕiβiϕ⊤
i (θ1+2 − θ1)

∇ℓ1(θ1+2) − ∇ℓ1(θ1)

Related to Leverage
score and influence
function.

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurIPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Three types of Examples

31

Very similar to Support Vectors!

Goes well
with EWC

Goes well
with FR

Goes well
with Replay

Easy

Uncertain/
Ambiguous

Miscalssified /
Atypical /
Outlier etc.

Mismatch Between the Past & Future

32

θ1

θ1+2

∇ℓ1(θ1+2) − ∇ℓ1(θ1)

Combining CL Methods

33

∑
i∈𝒟1\(ℳ1∪ℳ2)

… + ∑
i∈ℳ1

… + ∑
i∈ℳ2

…

Some high mismatch
points by FR

Low mismatch points,
approx by EWC

∥θ − θ1∥2
H \ℳ1∪ℳ2

1
+ ∑

i∈ℳ1

∥fi(θ) − fi(θ1)∥2 + ∑
i∈ℳ2

fi(θ)ei(θ1)

(θ1+2 − θ1) + [∇ℓ1(θ1+2) − ∇ℓ1(θ1)] + ∇ℓ2(θ1+2) = 0
Look deeper into the sources of mismatches

High mismatch with
label-noise by Replay

But, is unknown so we can’t choose well
without assuming things about the future.

θ1+2

1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).

Results with Random Memory
on ImageNet with ResNet-18

341. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023.

Published in Transactions on Machine Learning Research (11/2023)

0.1% 0.5% 2.0% 7.5%

Memory size (% of data)

20%

40%

60%

80%

Te
st

ac
c.

(a
vg

.o
ve

rt
as

ks
) Batch Joint

Batch Separate

Online EWC

FR

EWC+FR+Replay

1 2 3 4 5 6 7 8 9 10

Number of tasks

�15%

�10%

�5%

0%

Fo
rg

et
tin

g
(a

vg
.o

ve
rt

as
ks

) Batch Joint

EWC+FR+Replay

FR

Online EWC

Figure 4: Results on ImageNet-1000. EWC+FR+Replay performs favorably across a range of memory
sizes (left; x-axis log-scaled), and su�ers less from forgetting (relative to Batch Joint) with an increasing
number of tasks, here exemplary shown at the largest memory size of 7.5% (right).

2) weight-regularization – LwF (Li & Hoiem, 2017), EBLL (Rannen et al., 2017), EWC (Kirkpatrick et al.,
2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2018), mode-IMM (Lee et al., 2017), and 3) architectural
– PackNet (Mallya & Lazebnik, 2018), HAT (Serra et al., 2018) (Fig. 3 right).5

6.4 Results on ImageNet-1000

Setup. We consider the ImageNet-1000 benchmark proposed by Rebu� et al. (2017), which randomly splits
the full ImageNet dataset (Deng et al., 2009) of ≥1.2M data points into a sequence of 10 tasks with 100
classes and ≥120K data points each. Following Rebu� et al. (2017), we use a ResNet-18 with ≥11M model
parameters. For training on each task, we use the ImageNet reference training pipeline (with 40 epoch
configuration) of the FFCV library (Leclerc et al., 2022).6

Results. Fig. 4 shows our results on ImageNet-1000. We consider memory sizes between 200 and 10K per
task, where the latter amounts to 7.5% of the entire data. The observed trends qualitatively match those
from previous experiments. In particular, FR underperforms for small memory sizes, and while it improves
with increasing memory, it peaks at a 3.8% memory and then even starts declining. We hypothesize that this
is again due to accumulation of the NN error, which might become more severe with a larger memory as more
data points can contribute to the error. EWC+FR again improves accuracy for small memories, but does not
help for large memories. Finally, correcting for the NN error by additionally including the experience replay
term (EWC+FR+Replay) substantially boosts performance also at the large 7.5% memory. EWC+FR+Replay

thus combines the benefits of both error correction terms to perform well across all memory sizes, achieving
> 80% of the batch performance with a memory of < 10% of the past data. It also again su�ers less from
forgetting along the task sequence, demonstrating that it better mitigates error accumulation.

7 Conclusion

In this work, we proposed to address the continual learning problem in a theoretically-grounded way by
explicitly approximating the optimal model obtained via batch-training on all tasks jointly. To this end,
we developed EWC+FR+Replay, a new continual learning method which e�ciently re-uses prior knowledge
to reconstruct the gradients of the past training objective as faithfully as possible. To achieve this, our
method combines principles from function-regularization, weight-regularization, and experience replay to
reduce the gradient-reconstruction error. Empirically, we demonstrated the e�ectiveness and scalability of
EWC+FR+Replay across di�erent memory sizes on common task-incremental continual learning benchmarks.
In particular, we showed that our proposed EWC+FR+Replay approach can be less susceptible to catastrophic

5Results are from Delange et al. (2021); their total memory sizes [4500, 9000] correspond to [5.6%, 11.2%] of the data.
6For all details of the training procedure, see https://github.com/libffcv/ffcv-imagenet/.

11

Get 78% accuracy with 7.5% (random) memory

Erik Daxberger
(U Cambridge,
Now in Apple)

Kazuki Osawa (TokyoTech,
now in DeepMind)

See the poster
#J6 today.

Memory = Sensitive Examples

35

The future is unknown, but we could “protect”
from “expected” changes, say by deleting data ()

θ1
ℳ

⟹ θ−ℳ − θ1 ≈ (H1 + I)−1 ∇ℓℳ(θ1)

≈ H1(θ1 − θ−ℳ)

(θ−ℳ − θ1) − [∇ℓ1(θ1) − ∇ℓ1(θ−ℳ)] − ∇ℓℳ(θ−ℳ) = 0

Coincides with Influence Measures!

≈ ℓℳ(θ1)

Memory Perturbation Equation

36

Training on
full dataset

Retraining without
the i’th example

Truth
EstimatedStart

Iterations
Current

Past that has the most influence on the present

Choose memory based on the following criteria:
Prediction Error x Prediction Variance

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS, 2023

Outline of the Talk

• Distributed information over time and space [1] requires
dealing with Interference between the past and future

– “Gradient mismatch” [2] & “reconstruction” [3-5]
• Quick adaptation is possible when mismatches are

caused by just a few examples
– “Memorable Past” or Memory of models [4, 6]

• The difficulty of lifelong learning reduces to a faithful
representation of the past

37

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
3. Khan and Swaroop. Knowledge-Adaptation Priors, NeurIPS (2021).
4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020
5. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).
6. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS (2023)

Future of Continual Lifelong Learning

• Lifelong learning is possible only when each
subtasks allows quick adaptation
– Order matters!!!

• Revisit and fix mistakes
• Reduce revisiting frequency

– e.g., linear to log-linear, worst case = batch
• Memorable past matter

– Harder problems requires larger memory
– But larger memory make the problem easier

38

1 2 3 4

4 3 2 1

vs

39

The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

Received total funding of JPY 220M + EUR 500K through the
CREST-ANR grant! Thanks to JST for their generous funding!

40

Bayes-Duality Workshop
https://bayesduality.github.io/workshop_2024.html

Every year in June in Tokyo
Attendees are from a diverse research

interests: Bayes, Duality, Continual/
Federated/Active learning,
RL, Experiment Design etc.

https://bayesduality.github.io/workshop_2024.html

41

Team Approx-Bayes
https://team-approx-bayes.github.io/

Yohan Jung
(Started in July)

Christopher
Anders
(Started in July)

https://team-approx-bayes.github.io/

