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Continual Lifelong Learning

Keep learning for a long time by observing,
interacting, adapting, exploring the environment



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Current state of ML
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https://www.youtube.com/watch?v=TxobtWAFh80 6
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Continual Lifelong
Adaptation

For sustainable, reliable, transparent Al



What are (some) Fundamental Principles
of Continual Lifelong Learning?

Connecting, combining, and
improving existing methods



Outline of the Talk

* Distributed information over time and space [1] requires
dealing with Interference between the past and future

— “Gradient mismatch” [2] & “reconstruction” [3-5]

 Quick adaptation is possible when mismatches are
caused by just a few examples

— “Memorable Past” or Memory of models [4, 6]

* The difficulty of lifelong learning reduces to a faithful
representation of the past

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

3. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
5. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).

6. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)



Results on ImageNet with ResNet-18

Obtain 78% accuracy with just 7.5% data by
combining EWC, Functional Reg. & Replay.
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1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR2023(CoLLAs 2024) 1g



Distributed Information Processing
over Time and Space

Federated Learning

Continual Learning or or Model Merging
Sequential Learning

0, —>@1+2—>6’1+2+3—> /\
[ 2
2, 92, D, r1
2, 2
For such problems, we must be able to distinguish
the new information apart from the old information.

Note: These are not graphical models. Arrows represent the “flow” of information 4



The Intuition

If D, and 9, are different from each other, then
0., should also be different from &, and 0,.

The Bayesian way [1,2] is to define “new
information” by measuring the gain/change in the
posterior (or in @, or its predictions f.(6,) )

KL(pi,2llpy) 02— 0 J10,42) — 1(6))

| will present a simpler way to quantify 6, ,, — 0, in
terms of “gradient mismatch”, but remember that
there is always an underlying Bayesian principle [3]

1. Jaynes, Information theory and statistical mechanics, 1957
2. Zellner, Optimal information processing and Bayes’s theorem, The American Statistician, 1988.
3. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
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Model Merging

Connecting inaccuracy of model
merging to gradient mismatch

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).



Model Merging %

Given 6, fine-tuned on &, and 0, o,
6, fine-tuned on &,, merge | |
them (to estimate 6, . ,).

( 1+2) 91 @2

Simplest strategy is to use a0, + a,0, for scalars
a1, O, [1]. The quality depends on the difference:
042 — (10, + y0,)

For simplicity, | will assume a; = a, = 1. For the
full version, see our paper [2].

1. Wortsman et al. Robust fine-tuning of zero-shot models, CVPR 2022
2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).



A (dual) View: Parameters as Gradients

1
0, = argmin () + 5|I9||2 — 0=V/7,00, + 6,
0
— 91 - — Vl/ﬂl(gl)

In other words, parameters are gradients.

1
0, = argmin £,(0) + 5“‘9”2 —> 0, = — V,(6,)
0

. |
0,,, = arg mem Z1(0)+2,(0) + 5||«9||2
= 0112 = = V10112 — V(01 1))

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).



Parameter Change as Gradient Mismatch

‘91+2 — = VLﬂ1(91+2) — VLﬂ2(91+2)

Subtract the last two equations
0, =—=V&(0)  from the first one.
= 91_'_2 — (91 + 92)
New Old New Old
= — [VZ1(0,,0) — V1) — | VEx(0, 1) — VE,(6)]
Gradient Mismatch on &, Gradient Mismatch on 9,

Gradient mismatch among new and old parameters!

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).



Gradient Mismatch

(014,) — VZ,(0)

Ve,
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Gradient Mismatch
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Reducing the Mismatch
V£,6,.,) =~ VE(6)+H, - (0,,,—6)
00— (0, +0,)
= — |VZ1(0,,0) — VE1(0)] — [ VEx(0, 1) — VE,(6)]
~—H-(0,,,-0) —H, - (0,,,—0,)
H +1 H,+1
H +H,+1

Hessian-based merging [2] reduces mismatch. More
such results in [1], including task-arithmetic [3]

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
2. Matena and Raffel. Merging models with Fisher-weighted averaging, NeurlPS 2022
3. lIharco et al. Editing models with task arithmetic. ICLR 2023




Minimizing Gradient Mismatch
Reduces Test Error
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1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
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Continual Learning

Gradient mismatch and its
reconstruction

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).
2. Daxberger, Swaroop, Osawa, Yokota, Turner, Hernandez-Lobato, Khan, Improving CL by Accurate

Gradient Reconstruction of the Past, TMLR (2023) & CoLLAs (2024). 0



Gradient Mismatch in CL

‘91+2 — = VLﬂ1(91+2) — VLﬂ2(91+2)

Subtract the 2nd eq. from the 1st eq.
= O, — 0
New Old
-~ [Vf1(91+2) ~ Vfl(el)] — V£5(0142)
Gradient Mismatch on &, New loss

Gradient Mismatch on the past data.

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).



Knowledge-Adaptation Prior [1]

Find a regularizer that reconstructs the mismatch
Orio = 61 + | VE1(0)40) = VE1()] + VEYB,,5) =0
= VD(0,,,16,)
Then, solve 0,., = arg mein D(0|10,) + £,(0)

A wide-variety of adaptation methods can be seen
as using different choices of D [2-9]

1. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).

2. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
3. Benjamin et al. Measuring and regularizing networks in function space. ICLR 2019.
4. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.

5. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurlPS 2020.

6. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurlPS, 2001.

7. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.
8. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS’17

9. Csat6é and Opper. Sparse on-line Gaussian processes. Neural computation, 2002.
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EWC as K-Priors
(O142 = 61) +[VZ1(0,15) = V(O] + VB, 45) = 0
~ H(0,,,—0))
— I+ H)(O,,,—6)+ V6., =0
1
— 0,,, ~ arg mgin 5||9 — 0l s +£26)

EWC reduces the mismatch by “reusing” 6; which
is different from Experience Replay
0,., ~ argmin 7 ,(0)+£,(0)
0

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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Functional Regularizer (FR) as K-priors

For certain losses, gradient mismatch is equivalent
to reqularizing model “outputs/predictions”.

£(0) = Z £0)—y] 12 V£©) = Z #: [0 -y

where f,(0) = qué’ with @, belng a feature vector.
(0142 = 61) + V10, 15) = VO] + VEYBy 1) =
D b [(6112) — f(6))

€D,

=> Oy =argmin [0 =017+ D f©) —fO)I” + £3(0)
€Y,

1. Benjamin et al. Measuring and regularizing networks in functlon space. ICLR 2019.
2. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
3. Buzzega et al. Dark experience for general continual learning: a strong, simple baseline. NeurlPS 2020. 24



Knowledge Transfer in SVMs

It is also possible to rewrite entirely in function-
space, but this is only exact for convex cases [1]

argmin ||0 — 0,||* + || PO — DO, || + £,(0)
6

= arg max||la — a1||3D¢T+, + ()
a

where a is the dual variable; see [2-5].

Beware of the fully “function-space” methods; they
assume linearity and ignore “label noise”!!!

1. Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 2007.

2. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurlPS, 2001.

3. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.

4. Lopez-Paz and Ranzato. Gradient episodic memory for continual learning, NIPS’17

5. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020

25



How to Fix the FR methods

The problem: for neural-nets, features depend on &
va©) = 2, VOO =] ._ )

But, we can fix this issue by using Replay [1]

UACHERZA G

= D Vi(6)e(0) — VIO, f(6112)—#8) + £(@) ]

= Z [V£O) = V10| e0) = VO[O 40) — O]
= Vo, E Y OGN0 VLB {GLA D ) O16)]

i Replay Functional regularization
1. Daxberger et al. Impro ing CL by Accurate Gradient Reconstruction of the Past, TMLR (2023). 26



Summary

Gradient mismatch can be reduced
— Weight regularizers (e.g., EWC)
— Functional regularizers (& dual versions)
— Replay.
They are complementary and do different things.
— Uncertainty in weights, predictions, & labels.
Optimal combination depends on the task
Are there general principles for their combination?
— Look deeper into the sources of mismatch



Peter Nickl! Lu Xu*f Dharmesh Tailor*# Thomas Méllenhoff!
peter.nickl@riken. jp lu.xu.sw@riken. jp d.v.tailor@uva.nl thomas.moellenhoff@riken. jp

Memory

How to choose the examples to
regularize appropriately? How to
represent the past when the future is
unknown?

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023 28



An Early Idea

Choose the memory at the boundary

Task2 o0 o Task 3
Class O::%%) %’%
h - o
o e

” o o
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m o

ok
Task 1]

Class 1

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 29



Less Memorable
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1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Three types of Examples

Very similar to Support Vectors!

Goes well O
with EWC

[l
20 i c
| Goes well
G LD I%l with Replay

Uncertain/ Miscalssified /
Ambiguous ] [ Atypical /
Goes well Outlier etc.

with FR O

31



Mismatch Between the Past & Future
V(0142 — VZE41(6)

Gradient Mismatch

32



Combining CL Methods

Look deeper into the sources of mismatches
(O142 = 61) +[VZ1(0).0) = V(0D + VN0 45) = 0

IED (M VM ») €M, €M,
Low mismatch points, = Some high mismatch High mismatch with
approx by EWC points by FR label-noise by Replay

2 2
10 = 61117 o+ 2 WO = FODIP + Y F(O)e6))
i€, icM,
But, 0, , is unknown so we can’t choose well
without assuming things about the future.

1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).



Results with Random Memory
on ImageNet with ResNet-18

Get 78% accuracy with 7.5% (random) memory

— Batch Joint = = = = = = = = = e e e e
:@\ Q0% o e Batch Separate .........................
§ EWC+FR+Replay
—
2 Erik Daxb
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o 60% (U Cambridge,
Ob Now in Apple)
5 - =« = Online EWC
g 40% - /
O
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o
= 20% - EI/
I 1 1 1 1 II 1 1 I 1 1 1 1 1 1 I now in DeepM|nd)
0.1% 0.5% 2.0% 7.5% See th g
. ee the poster
Memory size (% of data) #16 tozay.

1. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR 2023. 34



Memory = Sensitive Examples

The future is unknown, but we could “protect” @,
from “expected” changes, say by deleting data (%)

(0_y—0,) = [V, 0)—VEO_ N =VE O0_,) =0
~ H,(0, —0_,) ~ € (0,

Coincides with Influence Measures!



Memory Perturbation Equation

Past that has the most influence on the present

Truth

® gEstimated
A

Current

Choose memory based on the following criteria:
Prediction Error x Prediction Variance

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023



Outline of the Talk

* Distributed information over time and space [1] requires
dealing with Interference between the past and future

— “Gradient mismatch” [2] & “reconstruction” [3-5]

 Quick adaptation is possible when mismatches are
caused by just a few examples

— “Memorable Past” or Memory of models [4, 6]

* The difficulty of lifelong learning reduces to a faithful
representation of the past

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

3. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS (2021).

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
5. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past, TMLR (2023).

6. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)
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Future of Continual Lifelong Learning

Lifelong learning is possible only when each
subtasks allows quick adaptation

— Order matters!!! 1 >2 —>3 >4
Revisit and fix mistakes vs
Reduce revisiting frequency  4>3—>2——1

—e.g., linear to log-linear, worst case = batch
Memorable past matter

— Harder problems requires larger memory

— But larger memory make the problem easier




The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Emtiyaz Khan Julyan Arbel Kenichi Bannai Rio Yokota

Research director Research director Co-PI (Japan side) Co-PI

(Japan side) (France side) (Japan side)
Math-Science Team at

Approx-Bayes team at Statify-team, Inria RIKEN-AIP and Keio Tokyo Institute of

RIKEN-AIP and OIST Grenoble Rhéne-Alpes University Technology

Received total funding of JPY 220M + EUR 500K through the
CREST-ANR grant! Thanks to JST for their generous funding!



Bayes-Duality Workshop

https://bayesduality.github.io/workshop 2024.html
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Adam White Alexander Immer Arindam Banerjee Daiki Chijiwa Ehsan Amid Eugene Ndiaye Frank Nielsen Jonghyun Choi Juho Lee Haavard Rue
University of Alberta, ETH, Switzerland University of Illinois NTT Corporation, Google DeepMind, Apple, France Sony Computer Seoul National KAIST, South Korea  KAUST, Saudi Arabia
Canada Urbana-Champaign, Japan us Science Laboratories, University, South
us Japan Korea

Hossein Mobahi Martin Mundt Matt Jones Nico Daheim Razvan Pascanu Rupam Mahmood Sarath Chandar Siddharth Swaroop Tom Rainforth Vincent Fortuin

Google Research, US TU Darmstadt, University of TU Darmstadt, Google DeepMind, University of Alberta,  Ecole Polytechnique  Harvard University,  University of Oxford, Helmholtz Al,
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Every year in June in Tokyo
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T interests: Bayes, Duality, Continual/
Federated/Active learning,

RL, Experiment Design etc.
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