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Continual Learning:
Lifelong and incremental

Quickly adapt to new situations by exploiting
(and preserving) the past knowledge

1. https://sites.google.com/view/cl-theory-icml2021/home
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Adaptation in Machine Learning

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Adaptation in Machine Learning

* Changes in the training frameworks [1,2]
— New data are regularly pooled and labeled
— Old data become irrelevant
— Regular hyperparameter tuning to handle drifts
— Model class/architectures needs an update

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Adaptation in Machine Learning

* Changes in the training frameworks [1,2]
— New data are regularly pooled and labeled
— Old data become irrelevant
— Regular hyperparameter tuning to handle drifts
— Model class/architectures needs an update
* Constant retraining, retesting, redeployment

— Huge financial and environmental costs (e.g.,
Tesla Al DataEngine takes 70000 GPU hrs [3])

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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This Talk

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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This Talk

* Adaptation mechanisms that are
— Quick (avoid full retraining)
— Accurate (performance similar to retraining)
— Wide (works for variety of tasks and models)
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This Talk

* Adaptation mechanisms that are
— Quick (avoid full retraining)
— Accurate (performance similar to retraining)
— Wide (works for variety of tasks and models)
* Knowledge-Adaptation priors (K-priors) [1]
— Principle: reconstruct the gradient of the “past”

— Unify & generalize many adaptation strategies
(weight priors, knowledge distillation, similarity
control, SVMs, GPs, and memory-based CL)

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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Knowledge-Adaptation Priors

Mohammad Emtiyaz Khan* Siddharth Swaroop*
RIKEN Center for Al Project University of Cambridge
Tokyo, Japan Cambridge, UK
emtiyaz.khan@riken. jp ss2163Q@cam.ac.uk
Abstract

Humans and animals have a natural ability to quickly adapt to their surroundings,
but machine-learning models, when subjected to changes, often require a complete
retraining from scratch. We present Knowledge-adaptation priors (K-priors) to
reduce the cost of retraining by enabling quick and accurate adaptation for a wide-
variety of tasks and models. This is made possible by a combination of weight and
function-space priors to reconstruct the gradients of the past, which recovers and
generalizes many existing, but seemingly-unrelated, adaptation strategies. Training
with simple first-order gradient methods can often recover the exact retrained model
to an arbitrary accuracy by choosing a sufficiently large memory of the past data.
Empirical results confirm that the adaptation can be cheap and accurate, and a
promising alternative to retraining.

Joint work with Siddharth Swaroop
University of Cambridge, UK

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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Adaptation Tasks

Given a base model w: trained on data [, adapt it to
“incremental” changes in the training framework

Change modelffv or architecture

()t (W) SRk —R (1) + G(w)

Delete data Add data €D Change regularizer or
(w — W*)TG(W*)(W — W) hyperparameter

Weight-priors
G is Hessian/Fisher [1],
Quick, but not wide/accurate

Adaptation mechanisms that are accurate, quick,
work for all these tasks, and for generic model f,,..

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017. 9



Inaccuracy of Weight-Priors
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‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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base model—

batch training—;
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decision boundary
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Inaccuracy of Weight-Priors
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‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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Knowledge-Adaptation Priors

K-priors use
past-memory
M (size M) in
addition to the
base model.

Weight-prior (bad)
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A General Principle of Adaptation

K-priors K(w; ws, /) use wx and A

(w4 (W) + St Rk R (w) + G(w)

'€ K(w; wa, M)

The principle is to choose K(w) and memory  s.t.
the “gradient of the past” is faithfully reconstructed.

VK (w) ~ V [ > bw) + R(w)}



K-prior Construction

Combine weight and function-space divergences
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K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space
K(w) = 7Dy (wllwy) + Dy (f(w)||f(w.))
} N
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model W W
N 2 2
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base model? ~ T rli ftﬁil)*
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K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space
K(w) = 7Dy (w]|wy) + D¢ (£(w)[|£(w.))
} N
Candidate - r1 1 T r1 7
model w W %
N 2 2
~ W W
~ - 3 3
base model— w W
S\ P Cfo ] L fa.
D\~ L No labels required,
- so ./ can include

any inputs!

13



Faithful Gradient Reconstruction

batch training—

M=0

True grads (black)
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Faithful Gradient Reconstruction

M=1 True grads (black) vs K-prior (red)

i ] J J
1 True Optimum

batch training—

. K-prior
optimum
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Faithful Gradient Reconstruction
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w

_ Zé(yqz,ﬁ(fi)) + 3w
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w

_ Zf(yqz,ﬁ(fi)) + 3w

1€D Funct1on space Weight-space
Ze w)) + 0w —w.|?

Memory all past data
The K- prlor recovers the exact gradients!

quz v) = o(fi)) +0(w—w.)
1€D —y+y
1€D 1€D

Vi(w) Vi(w,) =0
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How to Choose Memory?

Memory should contain points where the (unknown)
future and past models disagree the most

Viw) = VKw) = Y ¢i(o(fi) —o(fi.))

€D\ M Prediction disagreement

~ | Y oo (fa)el |(w - w.)

1€ D\M 2nd derivativeojfthe loss

Generalized Gauss-Newton (GGN)

Independent of w

Pick points to minimize the GGN approximations.
We can use any low-rank approximation. We pick
top-M 6'(f,,.) which is called memorable past [1].

1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.
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1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.
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1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.



Existing Work

K-priors unify many seemingly unrelated existing
work, and provide speed-accuracy trade-oft

Wide

Weight priors [1]

SVMs [2]

Knowledge Distillation [3]

Learning under privileged info [4]

Gaussian Process [5]
Memory-based CL [6]

XX XX XX

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.

2. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurlPS, 2001.

3. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.

4. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.
5. Csat6 and Opper. Sparse on-line Gaussian processes. Neural computation, 2002.
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Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.

=2 _Viu(o(fu) =) = D Viur.
1€D 1€D |
Residuals f,, — y;

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.



Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.

= > Viuo(f) —y) =D _ Vi,
1€D 1€D |
Residuals f,, — y;
“Avoid past mistakes
of the teacher”.
Very similar to using
“slack” in SVM [2] to
Improve student’s
learning.

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.



Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.
VE(w) =Y Vfu(o(fi)—y) =Y Vi
i€D i€D
Residuals [, — .

“Avoid past mistakes Teacher’s mistakes
” provided to the student
of the teacher”.

3
Very similar to using

“slack” in SVM [2] to °

Improve student’s 5

learning. ® i
Teoche s

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015’.\‘5h|«5
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.



Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.

VE(w) = Y Vi)~ )~ 3 Vs,
: 1€D
€D - Residualevl;,* — Y

“Avoid past mistakes Teacher’s mistakes Student solves a
) provided to the student simpler problem

of the teacher”. ¥

Very similar to using

“slack” in SVM [2] to

Improve student’s 5

learning. ® 7

stakes

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015,
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015. 22



Results

K-priors need < 2% of past data to match “batch”.

Validation acc (%)

100

80

60

40

20

Add new data

s Batch
== Replay
={ = K-prior

2

5

10 20 50 100

Memory size (% of past data)

The results are on
USPS binary
classification with
Neural nets.

“Replay” uses the
same memory but
with true outputs.
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Results

Add new data

I Batch
== Replay
={ = K-prior

Change Hegularizer

Memory size (% of past data)

Remove old data

Change architecture

2 5 10 20 50 100 2 5 10 20 50 100

Memory size (% of past data)

K-priors only need
about 2-5% of the
past data to match
retraining on full
batch.

The results are on
USPS binary
classification with
Neural nets.
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Future Directions

* The general principle of adaptation in K-priors is to faithfully
reconstruct “past gradients”

* This is an instance of a more general Bayesian principle to reconstruct
“past natural parameters” of the posterior approx.

— K-prior is a first-order approx. (Gaussian with unknown mean)

— Extend with posteriors with higher-order sufficient statistics
(Gaussian with unknown covariance)

The Bayesian Learning Rule

Mohammad Emtiyaz Khan Havard Rue
RIKEN Center for AI Project CEMSE Division, KAUST
Tokyo, Japan Thuwal, Saudi Arabia
emtiyaz.khan@riken. jp haavard.rue@kaust.edu.sa
Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea
in deriving such algorithms is to approximate the posterior using candidate distributions estimated by
using natural gradients. Different candidate distributions result in different algorithms and further
approximations to natural gradients give rise to variants of those algorithms. Our work not only
unifies, generalizes, and improves existing algorithms, but also helps us design new ones.

25
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Future Directions

* Another challenge is what to store and how much memory to allocate
— Inherent trade-off between speed and accuracy
— We “have” to reasonable assumptions about the future
— The “dual space” of the “divergence” plays a key role

* We are developing “dual representations” are used for Knowledge
representation, transfer, and collection

— A new paper on “memorable past” coming soon

[Submitted on 5 Jun 2019 (v1), last revised 19 Jul 2020 (this version, v3)]

Approximate Inference Turns Deep Networks into
Gaussian Processes

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, Maciej Korzepa

Deep neural networks (DNN) and Gaussian processes (GP) are two powerful models with
several theoretical connections relating them, but the relationship between their training
methods is not well understood. In this paper, we show that certain Gaussian posterior
approximations for Bayesian DNNs are equivalent to GP posteriors. This enables us to relate
solutions and iterations of a deep-learning algorithm to GP inference. As a result, we can
obtain a GP kernel and a nonlinear feature map while training a DNN. Surprisingly, the
resulting kernel is the neural tangent kernel. We show kernels obtained on real datasets and
demonstrate the use of the GP marginal likelihood to tune hyperparameters of DNNs. Our
work aims to facilitate further research on combining DNNs and GPs in practical settings.

[Submitted on 29 Apr 2020 (v1), last revised 8 Jan 2021 (this version, v4)]

Continual Deep Learning by Functional Regularisation
of Memorable Past

Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E.
Turner, Mohammad Emtiyaz Khan

Continually learning new skills is important for intelligent systems, yet standard deep
learning methods suffer from catastrophic forgetting of the past. Recent works address
this with weight regularisation. Functional regularisation, although computationally
expensive, is expected to perform better, but rarely does so in practice. In this paper, we
fix this issue by using a new functional-regularisation approach that utilises a few
memorable past examples crucial to avoid forgetting. By using a Gaussian Process
formulation of deep networks, our approach enables training in weight-space while
identifying both the memorable past and a functional prior. Our method achieves state-
of-the-art performance on standard benchmarks and opens a new direction for life-long
learning where regularisation and memory-based methods are naturally combined.
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