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Abstract
A general framework for modeling and analyzing systems with
wireless devices is proposed. This framework is used to derive
an optimal state estimator when the network introduces ran-
dom communication delays and packet losses. The framework
is general and allows us to analyze earlier results derived in
the context of state estimation with delayed and missing ob-
servations.

1. INTRODUCTION

Applications such as coordinated control of autonomous ve-
hicles (UAV formations, etc.) and monitoring of plants spread
over large areas, involve data transfer over wireless commu-
nication links. When compared with wired devices, wireless
devices have a number of advantages, such as mobility, flexi-
bility in installation and maintenance, and in many situations,
their use is unavoidable. However, constraints inherent to this
technology, lead to undesirable effects such as latency and
packet losses [1, 2, 3]. To minimize controller performance
degradation due to these effects, it is necessary to focus on
robustness of control applications in the presence of random
delays and missing data.

State estimation is an important component in many model-
based, multivariable control techniques and has a direct im-
pact on closed-loop performance. Optimal state estimation
techniques are used in a number of signal processing and con-
trol applications. The Kalman filter is an optimal, recursive,
linear estimator, which estimates the state of a linear system,
by weighting the measurements according to a priori infor-
mation about their accuracies [4]. While, the Kalman Filter
was originally developed to deal only with regularly sampled
data, it was extended to handle missing data, motivated by
multirate applications [5, 6]. State estimation techniques in
systems which use wireless devices, were studied to establish
statistical convergence properties of the error covariance ma-
trix. Analysis of packet loss effects, led to the establishment
of a critical arrival rate of observations, and bounds on the ex-
pected state error covariance [2, 3, 7]. Additionally, Smith et.
al. [8] used the Jump Markov Linear Systems (JMLS) frame-
work to study these packet loss effects.

State estimation with random delay observations has been
addressed in some of the previous works. The JMLS frame-
work was used for state estimation with bounded random de-
lay in [9]. Approaches based on linear matrix inequality and
discrete state have been reported in [10, 11, 12]. However all
these attempts were made irrespective of the issue of missing
observations and an attempt to solve both missing and delayed
observations under one framework is missing in the literature.

In the context of state estimation in wireless systems, we
can consider two problems to solve, depending on the time in-
stances of missing and delayed observation are known or not
for a given observation sequence. We use the term implemen-
tation problem, to refer to the problem when these are known.
On the other hand, in a case where the interest lies in studying
the effect of loss and delay probabilities, missing and obser-
vation instances may not be known; only the probabilities are
available. We term this problem as the design problem. In this
paper, we have addressed the implementation problem. Work
on design problem will be published separately.

In this paper, we propose a stochastic hybrid system frame-
work for analyzing systems which have wireless components.
The generality of the framework, allows us to analyze existing
results in this area, which were derived under various simpli-
fying assumptions. The rest of the paper is as follows. In
Section 2, we present the model based on the event based
approach. Following this, in Section 3, we describe deriva-
tion of optimal state estimator with innovation approach. In
Section 4, we derive the recursive estimators for the missing
observation and the one-sample delay cases respectively. Fi-
nally, we present a numerical example to demonstrate the use
of these estimators in Section 5.

2. MODELING THE NETWORK USING AN
EVENT-BASED APPROACH

We assume that the system is as illustrated in the block di-
agram in Fig. 1. Sensor measurements yt from the plant,
are communicated through a wireless network channel to
give output zt . We assume that the true plant dynamics are
adequately captured by the discrete-time, linear, state-space
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Fig. 1. Block diagram representation of system

model shown in Eq. (1).

xt+1 = Axt +wt

yt = Cxt +vt (1)

where, xt ∈ℜn is the state vector, yt ∈ℜm is the output vector,
wt ∈ ℜn and vt ∈ ℜm are the state and measurement noise
vectors respectively. Terms involving the known manipulated
inputs are omitted in Eq. (1) because they merely introduce
a mean shift in the state-space. We assume that the initial
state vector and the noise vectors are i.i.d Gaussian random
variables, x0 ∼ N(µ0,Σ0), wt ∼ N(0,Q), vt ∼ N(0,R), where,
Σ0, Q and R are symmetric, positive definite matrices. For
simplicity, E

(

vtwT
t

)

= 0, E
(

x0wT
t

)

= 0 and E
(

x0vT
t

)

= 0,
where E( ) is the Expectation operator.

With these assumptions and in the absence of any missing
sensor measurements, the Kalman filter is used to compute
the minimum mean squared error state estimate [4] for the
system represented by Eq. (1). We also assume that the matrix
pair, {A,Q1/2} is controllable and {A,C} is observable. This
ensures stability of the Kalman filter.

We define, Ys ≡{y1, . . . ,ys}, Zs ≡{z1, . . . ,zs}. Further, we
use the following definitions for the conditional expectations
of the states and the corresponding error covariances: x̂t|s =

E (xt |Zs) and Pt|s = E
(

(xt − x̂t|s)(xt − x̂t|s)
T |Zs

)

.
We model the effect of the wireless channel on the sensor

measurements using a discrete random variable, Ft , which can
take values from the finite set1, LFt = {F1,t ,F2,t , . . . ,Fs,t}, at
time t. Each of these states represents a different physical
event in the network. We use pi,t to denote the probability
that Ft = Fi,t . We make the following assumptions about this
discrete random process:

A1 LFt is an exhaustive set, i.e., ∑s
i=1 pi,t = 1.

A2 The state-space of Ft is time-invariant, i.e., Fi,t = F i ∀ i =
1, . . . ,s. Hence, we drop the time subscript in LFt .

A3 The vectors, zt and yt are of the same dimension, i.e., zt ∈
ℜm, and zt , which is obtained from the wireless channel
at time t is an element of the set, {y1,y2, . . . ,yt}.

1LFt is referred to as “state-space of Ft ”, and each element is a possible
“state of Ft ”

A4 Measurements obtained from the wireless channel can-
not be out-of-sequence, i.e., if zi = y j, j ≤ i,zi+c /∈
{y1, . . . ,y j−1}, where c is a positive integer.

We now present a few simple cases to demonstrate our hybrid
system representation.

Missing observations: Consider the case of missing ob-
servations. In this case the state-space of F can be LF =
{F1,F2}. If Ft = F1, the observation is available so that
zt = yt . In the other case when Ft = F2, no new observa-
tion is available from the network. Hence zt = y j, where y j is
the most recent value successfully communicated through the
network (in other words, an old observation in the buffer).

One sample delay: Again the state-space can be LF =
{F1,F2}, with Ft = F1 for zt = yt and Ft = F2 for zt = yt−1

(delayed by one sample). Note that when the yt gets delayed at
time t, due to our assumptions A3 and A4 we cannot guarantee
that yt will be observed at the next sampling instant. So if
Ft+1 = F2, zt+1 = yt , but if Ft+1 = F1, then zt+1 = yt+1, i.e.,
the measurement yt has been overwritten by yt+1 at the output
buffer of the network. Hence, with the proposed framework,
the delay case automatically includes the missing-data case
(similar to the earlier approaches of [10, 11, 12]).

3. STATE ESTIMATION

Estimation objective : Given observations Zt , find a linear,
recursive estimator x̂t|t of xt , which minimizes the trace of the
estimation-error covariance matrix Pt|t .

We use innovation approach as described in [13]. We will
first briefly describe the method of innovation approach for
derivation of classical Kalman filter. (In rest of the paper,
we assume µ0 = 0; results obtained can be easily extended
to non-zero mean case.). In the absence of wireless links, the
observations yt will be available at all the times. As described
in [13], innovation process is based on the orthogonalization
procedure, wherein we transform {y1,y2, . . . ,yt} to an equiv-
alent set of orthogonal vectors {ẽ1, ẽ2, . . . , ẽt}; equivalent in
the sense that they span the same linear (sub)space, i.e.,

L {ẽ1, . . . , ẽt} = L {y1, . . . ,yt} (2)

L (S) denotes the linear span of set S (different from LF ,
state-space of F which is a set). Because of the orthogonality
of {ẽ j}, the state estimate x̂t|t given y1,y2, . . . ,yt can be found
by separately projecting xt along each of ẽ1, . . . , ẽt ,

x̂t|t =
t

∑
j=1

Proj{xt along ẽ j}ẽ j =
t

∑
j=1

E[xt ẽT
j ]R

−1
ẽ, j ẽ j (3)

where Rẽ, j = E[ẽ j ẽT
j ]. Here Proj{xt along ẽ j} means “the pro-

jection of xt along the orthogonal variable e j (refer [13], chap-
ter 4, page 132). The next orthogonal vector corresponding
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to the new observation yt+1 can be computed using Gram-
Schmidt orthogonalization procedure,

ẽt+1 = yt+1 −
t

∑
j=1

E[yt+1ẽT
j ]R

−1
ẽ, j ẽ j (4)

The orthogonal vector ẽt+1 can be regarded as “new informa-
tion” or the “innovation” in y t+1 given y1,y2, . . . ,yt , and the
process {ẽt} as the innovation process associated with {yt}.
This formulation can be used to derive the classical Kalman
filter recursion [13], which is summarized below:

x̂t|t−1 = Ax̂t−1|t−1, Pt|t−1 = APt−1|t−1AT +Q (5)

ẽt = yt −Cx̂t|t−1 Rẽ,t = CPt|t−1CT +R (6)

x̂t|t = x̂t|t−1 +Kt ẽt , Pt|t = Pt|t−1 −KtRẽ,tK
T
t (7)

where Kt is the Kalman gain and equal to Pt|t−1CT R−1
ẽ,t .

3.1. Innovation approach in the presence of wireless links

As stated in [13] (Chapter 9, page 324), the major assumption
made in the earlier described method is that Rẽ, j are invertible
for all j, which corresponds to a nondegeneracy assumption
on the process {yt}, viz. that no variable yt can be estimated
without error by some linear combination of earlier variables.
Obviously, then, yt+1 /∈ L {y1, . . . ,yt} = L {ẽ1, . . . , ẽt} and
hence ẽt+1 6= 0, and Rẽ,t+1 is invertible.

However in the presence of wireless links this need not be
always true, for e.g. if the observation at time t + 1 is lost,
zt = y j where y j is the most recent value successfully com-
municated through the network. Hence zt+1 ∈ L {z1, . . . ,zt}
and no new information will be available in zt+1. In this case
innovation will be zero at time t +1, and hence it’s covariance
will not be invertible. This is illustrated in Fig. 2 for t = 3.

Hence not all observations will add dimensions to the sub-
space L {z1, . . . ,zt} and its dimension can be less than t. So if
we have a set of orthogonal vectors2 {e1,e2, . . . ,et} equivalent
to the observations {z1,z2, . . . ,zt}, only some of the innova-
tions will be orthogonal basis for this subspace (and others

2from now on we refer to {et} as innovation process corresponding to {zt}

will be zero). We denote this set of non-zero innovations as
e+

t ≡ {e j : Re, j > 0,1 ≤ j ≤ t}, where Re, j = E[e jeT
j ] is co-

variance of the innovation at time j.
Then the earlier described orthogonalization procedure can

be modified by considering only the set e+
t for estimation and

discarding the other set of innovations3. The Eq. (4) will be
modified as,

et+1 = zt+1 − ∑
e j∈e+

t

E[zt+1eT
j ]R

−1
e, j e j (8)

Also the state estimates given by Eq. (3) can be rewritten
as:

x̂t|t = ∑
e j∈e+

t

E[xteT
j ]R

−1
e, j e j (9)

Using this modified innovation approach, we now derive
state estimator for different cases.

4. RECURSIVE ESTIMATOR FOR MISSING AND
DELAYED OBSERVATION

The events along with the innovations in the case of missing
observations are listed here:

Ft zt e+
t

F1 yt {et ,e+
t−1}

F2 y j, j < t e+
t−1

We can see that depending on the state of Ft , an innovation
will be added to the set e+

t . Based on this, the state estimator
is derived in Appendix A, and summarized here:

Theorem 1 (Recursive estimator for missing observation)
For the missing observation model described in Section 2, the
one-step state prediction can be obtained as,

x̂t|t−1 = Ax̂t−1|t−1, Pt|t−1 = APt−1|t−1AT +Q (10)

with x̂1|0 = 0 and P1|0 = Σ0. When observation is received, i.e.
Ft = F1, the filtered state estimates are computed by Eq. (7)
of the classical Kalman filter. On the other hand for the case
of missing observation, we use the prediction x̂t|t = x̂t|t−1 and
Pt|t = Pt|t−1.

Note that when Ft = F1, new observation (and hence in-
novation) is available, and the estimator is similar to the
classical Kalman filter recursion. However when Ft = F2,
zt ∈ L {z1, . . . ,zt−1} and innovation is zero, and the correc-
tion term is missing in the Kalman filter. In [2], missing ob-
servations are modeled with an i.i.d. random process γt with
sample space {0,1}, on which pdf of the observation noise vt

is conditioned as follows:

p(vt |γt) =

{

N (0,R), when γt = 1
N (0,σ 2I), when γt = 0

(11)

3In other words, we are choosing the weights of the other innovations to
be zero
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With σ → ∞ the model corresponds to the missing obser-
vation. The estimator derived with this approach is same as
the proposed estimator. However it seems that the approach
of [2] cannot be extended for one sample delay case and it is
limited to missing observations only. We now show that the
event based approach is quite flexible in this regard and it can
be easily extended to the one sample delay case.

The one sample delay case is not as simple as the missing
observations, and the four cases involved are shown in Fig. 3.
These cases can be described by using four events which are
listed in this table:

Case Ft−1 Ft e+
t

I F1 F1 {et ,e+
t−1}

II F2 F1 {et ,e+
t−1}

III F2 F2 {et ,e+
t−1}

IV F1 F2 e+
t−1

Except the case IV, in all the others, an innovation will be
added at time t to the set e+

t−1. The estimator, derived in Ap-
pendix B, is summarized in the following theorem:

Theorem 2 (Recursive estimator for one sample delay case)
The one-step state prediction can be obtained as the classical
Kalman filter with Eq. (5). The filtered state estimates are
computed for different cases as follows:

A. For case I, II with Eq. (7) of classical Kalman filter.

B. For case III still use Eq. (7), but with different innova-
tions and Kalman gain computed as

et = zt −Cx̂t−1|t−1 (12)

Re,t = CPt−1|t−1CT +R (13)

Kt = APt−1|t−1CT R−1
e,t (14)

C. Case IV use the prediction x̂t|t = x̂t|t−1 and Pt|t = Pt|t−1

The results are intuitive. In cases I and II, classical Kalman
filter is used as the observations are available. Case III is sim-
ilar to a Kalman filter recursion at time t − 1, and then a pre-
diction (and hence multiplication by A). Case IV is similar to
missing observation as the observation is repeated and no new
information is available. A similar estimator has been derived
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Fig. 4. State estimates x̂t|t and error covariance Pt|t for missing observation
case.

in [12] with innovation approach, however zero innovations
have been forced to have invertible covariance, which intro-
duces additional error in estimation. We will show this with
simulations in Section 5.

5. NUMERICAL EXAMPLE

In this section, we present numerical examples to demon-
strate the performance of the proposed estimators. We con-
sider the model described in Section 2 with A = 0.95,C =
1,Q = 0.1,R = 0.9,x0 = 0,Σ0 = 1.025641. Note that this cor-
responds to a scalar case with m = n = 1. Also we have chosen
p1,t = 0.5.

The Fig. 4 and 5 show the state estimates for missing obser-
vation and one sample delay case respectively. We can see that
error variance varies with time (unlike the classical Kalman
filter). Whenever an observation is lost (or delayed with case
IV), innovation is zero and the error variance increases be-
cause the correction term is not available then. However it
starts decreasing in the other cases.

As stated earlier in Section 4, one sample delay estimator
derived in [12] forces zero innovations to have invertible co-
variance. To show this we compute averaged error covariance
P̄t|t for 1000 realizations using both the estimators, the one
derived in [12] and our proposed estimator. Fig. 6 shows the
comparison, where we can see that because of the proposed
modification the error variance has reduced.

6. CONCLUSIONS AND FUTURE WORK

A general framework has been presented for state estimation
in systems with wireless devices. Using this framework, opti-
mal, recursive, online state estimators have been developed for
the cases where the wireless network introduces random delay
and missing observation effects. Preliminary results on sim-
ulation case-studies indicate that the state estimates obtained
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Fig. 6. Comparison of error covariance of the proposed estimator (thick
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using this approach have better accuracy in comparison with
earlier approaches.

APPENDIX

A. RECURSIVE ESTIMATOR FOR MISSING
OBSERVATION

For all e j ∈ e+
t , E

[

xteT
j

]

in Eq. (9) can be expanded using
Eq. (8) as follows,

E
[

xteT
j

]

= E
[

xtzT
j

]

− ∑
ek∈e+

j−1

E
[

xteT
k

]

R−1
e,k E

[

z jeT
k

]T
(15)

for 2 ≤ j ≤ t, and E
[

xteT
1

]

= E
[

xtzT
1

]

for j = 1. Also e j ∈ e+
t

implies Fj = F1, so that z j = y j, and the first term of Eq. (15)
can be rewritten as:

E
[

xtzT
j ] = E

[

xtyT
j ] = E

[

xtxT
j ]C

T = At− jRx, jC
T (16)

where Rx, j ≡E[x jxT
j ]. Using this and Eq. (15), we can see that

there exists a function J j, satisfying,

E
[

xteT
j

]

= At− jJ j (17)

J j = Rx, jC
T − ∑

ek∈e+
j−1

A j−kJkR−1
e,k E

[

z jeT
k

]T
(18)

J1 = Rx,1CT (19)

Using this in Eq. (9), the state estimates are now given by:

x̂t|i = ∑
e j∈e+

i−1

At− jJ jR
−1
e, j e j (20)

A.1. Recursions for x̂t|t−1, Pt|t−1, x̂t|t and Pt|t

Using Eq. (20) with i = t−1, we get recursion for the one-step
state prediction,

x̂t|t−1 = ∑
e j∈e+

t−1

At− jJ jR
−1
e, j e j = Ax̂t−1|t−1 (21)

Putting i = t in Eq. (20) we get the filtered estimate,

x̂t|t = ∑
e j∈e+

t−1

At− jJ jR
−1
e, j e j + JtR

−1
e,t et = x̂t|t−1 +Ktet (22)

where Kt is defined as Kt ≡ JtR
−1
e,t . As expected when the

innovation is available, the prediction estimate can be cor-
rected to give filtered estimate. However when et /∈ e+

t , then
e+

t = e+
t−1 and hence, x̂t|t = x̂t|t−1.

Next we get the recursion for Pt|t−1 using the difference of
state and estimator covariance matrices (similar approach can
be seen in [13], page 328). In the model given by Eq. (1), the
covariance matrix of the state-vector follows the recursion,

Rx,t = ARx,t−1AT +Q, Rx,t ≡ E[xtxT
t ] (23)

Denoting the covariance matrix of one-step state predictor
as Σt|t−1 ≡ E

[

x̂t|t−1x̂T
t|t−1

]

and using the Eq. (21), we have

Σt|t−1 = AΣt−1|t−1AT with initial condition Σ1|0 = Σ0. But
as x̂t|t−1 is orthogonal to xt − x̂t|t−1, and xt = (xt − x̂t|t−1)+
x̂t|t−1, we get,

Rx,t = Pt|t−1 +Σt|t−1 (24)

so that Pt|t−1 = Rx,t −Σt|t−1 = APt−1|t−1AT +Q. This gives us
the recursion for Pt|t−1.

Similarly, defining the covariance matrix of the filtered state
estimator as Σt|t ≡ E

[

x̂t|t x̂T
t|t

]

, we have,

Σt|t =

{

Σt|t−1 +KtRe,tKT
t , for et ∈ e+

t
Σt|t−1, for et /∈ e+

t
(25)

and similar to Eq. (24), we have Rx,t = Pt|t +Σt|t , using which
we get recursion for Pt|t :

Pt|t =

{

Rx,t −Σt|t = Pt|t−1 +KtRe,tKT
t , for et ∈ e+

t
Pt|t−1, for et /∈ e+

t
(26)

Note that (see table in missing observation case), et ∈ e+
t when

Ft = F1 and et /∈ e+
t when Ft = F2 which gives the correspond-

ing equation for filtering and prediction of Theorem 1.



A.2. Expressions for et and Re, j

For all e j ∈ e+
t−1, we can write,

E[zteT
j ] = E[yteT

j ] = CE[xteT
j ]+E[vteT

j ] = CAt− jJ j (27)

Substituting this into Eq. (8) and using Eq. (21) we get expres-
sion for innovation at time t: et = zt −Cx̂t|t−1.

Using the fact that et is orthogonal to the past innovation
variable, we can write an expression for Re,t using Eq. (8):

Re,t = E[eteT
t ] = E[ztzT

t ]− ∑
e j /∈e+

t−1

E
[

zteT
j

]

R−1
e, j E

[

zteT
j

]T
(28)

with Re,1 = E[z1zT
1 ]. We compute E[ztzT

t ] as follows:

E[ztzT
t ] = E[ytyT

t ] = CE[xtxT
t ]CT +R = CRx,tC

T +R (29)

Substituting it into Eq. (28) along with E[zteT
j ] from Eq. (27):

Re,t = CRx,tC
T +R− ∑

e j /∈e+
t−1

CAt− jJ jR
−1
e, j J

T
j (At− j)TCT(30)

From Eq. (21), we note,

Σt|t−1 = E
[

x̂t|t−1x̂T
t|t−1

]

= ∑
e j /∈e+

t−1

At− jJ jR
−1
e, j J

T
j (At− j)T (31)

Using this in Eq. (30),

Re,t = CRx,tC
T +R−CΣt|t−1CT = CPt|t−1CT +R(32)

where the last step is by using Eq. (24).

A.3. Expression for Kt

As Kt = JtR
−1
e,t , we first compute Jt . Eq. (18) can be rewritten:

Jt = Rx,tC
T − ∑

e j∈e+
t−1

At− jJ jR
−1
e, j J j(A

t− j)TCT (33)

= Rx,tC
T −Σt|t−1CT = Pt|t−1CT (34)

so that, Kt = Pt|t−1CT R−1
e,t .

B. RECURSIVE ESTIMATOR FOR ONE SAMPLE
DELAY CASE

For the case IV, as shown in Fig. 3, et /∈ e+
t . So the estimator

will be similar to classical Kalman filter without correction
term. In cases I and II, we have zt = yt , hence the estimator
will be the same as the missing observation case when Ft =
F1. In case III, as zt = yt−1, the estimator can be derived just
by replacing yt by yt−1 in the missing observation case to get:

et = zt −Cx̂t−1|t−1 (35)

Re,t = CPt−1|t−1CT +R (36)

Kt = APt−1|t−1CT R−1
e,t (37)
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