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AI that learn like humans

Learn and adapt quickly throughout their lives
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Human Learning at 
the age of 6 months.
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Converged at the 
age of 12 months
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Transfer 
skills

at the age 
of 14 

months



Human learning           Deep learning
Life-long learning from 
small chunks of data in 
a non-stationary world

6

6=
<latexit sha1_base64="lrmwHvCbsDs1U3LqfpvP2RpzHM4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKex60WPAi94imgckS5yd9CZDZmeXmVkhLPkELx4U8epn+BXe/Az/wNkkB00saCiquunuChLBtXHdL6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXeZ+6wGV5rG8M+ME/YgOJA85o8ZKt12JvXLFrbpTkGXizUmlVvn+uAeAeq/82e3HLI1QGiao1h3PTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1seuqEnFilT8JY2ZKGTNXfExmNtB5Hge2MqBnqRS8X//M6qQkv/IzLJDUo2WxRmApiYpL/TfpcITNibAllittbCRtSRZmx6ZRsCN7iy8ukeVb13Kp3Y9O4hhmKcATHcAoenEMNrqAODWAwgEd4hhdHOE/Oq/M2ay0485lD+APn/QeSMpA6</latexit><latexit sha1_base64="MhO56FKu6KxG2dmr00AhxTbk35o=">AAAB6nicbVC7SgNBFL0bXzG+opY2g0GwCrs2Wga00C4+8oBkCbOTu8mQ2dllZlYIS1o7GwtFbP0Mv8LOz/APnDwKTTxw4XDOvdx7T5AIro3rfjm5peWV1bX8emFjc2t7p7i7V9dxqhjWWCxi1QyoRsEl1gw3ApuJQhoFAhvB4HzsN+5RaR7LOzNM0I9oT/KQM2qsdNuW2CmW3LI7AVkk3oyUKqXvj9rDxU21U/xsd2OWRigNE1Trlucmxs+oMpwJHBXaqcaEsgHtYctSSSPUfjY5dUSOrNIlYaxsSUMm6u+JjEZaD6PAdkbU9PW8Nxb/81qpCc/8jMskNSjZdFGYCmJiMv6bdLlCZsTQEsoUt7cS1qeKMmPTKdgQvPmXF0n9pOy5Ze/apnEFU+ThAA7hGDw4hQpcQhVqwKAHj/AML45wnpxX523amnNmM/vwB877D/8VkUs=</latexit><latexit sha1_base64="MhO56FKu6KxG2dmr00AhxTbk35o=">AAAB6nicbVC7SgNBFL0bXzG+opY2g0GwCrs2Wga00C4+8oBkCbOTu8mQ2dllZlYIS1o7GwtFbP0Mv8LOz/APnDwKTTxw4XDOvdx7T5AIro3rfjm5peWV1bX8emFjc2t7p7i7V9dxqhjWWCxi1QyoRsEl1gw3ApuJQhoFAhvB4HzsN+5RaR7LOzNM0I9oT/KQM2qsdNuW2CmW3LI7AVkk3oyUKqXvj9rDxU21U/xsd2OWRigNE1Trlucmxs+oMpwJHBXaqcaEsgHtYctSSSPUfjY5dUSOrNIlYaxsSUMm6u+JjEZaD6PAdkbU9PW8Nxb/81qpCc/8jMskNSjZdFGYCmJiMv6bdLlCZsTQEsoUt7cS1qeKMmPTKdgQvPmXF0n9pOy5Ze/apnEFU+ThAA7hGDw4hQpcQhVqwKAHj/AML45wnpxX523amnNmM/vwB877D/8VkUs=</latexit><latexit sha1_base64="lNb1xAhMZqqBDpSiAPKflgrB38s=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFfZstAzYaBfRxEByhL3NXLJkb+/Y3RPCkZ9gY6GIrb/Izn/jJrlCEx8MPN6bYWZemEphLKXfXmltfWNzq7xd2dnd2z+oHh61TZJpji2eyER3QmZQCoUtK6zETqqRxaHEx3B8PfMfn1AbkagHO0kxiNlQiUhwZp1031PYr9Zonc5BVolfkBoUaParX71BwrMYleWSGdP1aWqDnGkruMRppZcZTBkfsyF2HVUsRhPk81On5MwpAxIl2pWyZK7+nshZbMwkDl1nzOzILHsz8T+vm9noKsiFSjOLii8WRZkkNiGzv8lAaORWThxhXAt3K+Ejphm3Lp2KC8FffnmVtC/qPq37d7TWuC3iKMMJnMI5+HAJDbiBJrSAwxCe4RXePOm9eO/ex6K15BUzx/AH3ucPR36Nyg==</latexit>

Bulk learning from a 
large amount of data in 

a stationary world

1. Parisi, German I., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

My current research focuses on reducing this gap!

2. Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual 
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)

Bayesian Principles
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Bayesian (Principles for) Learning Machines

• Uncertainty
– What you don’t know now, can hurt you later

• Learning
– Derive learning-algorithms from Bayes

• Knowledge
– Extract knowledge as memorable examples
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Which is a good classifier?
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Which is a good classifier?
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What you don’t know 
now, can hurt you later
“Uncertainty matters”

Misclassified by the red 
line, but not by the blue



Uncertainty of Deep Nets
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

Bayes

One Model vs Many.

A key idea in Bayes is to 
estimate distributions 
over model parameters 
(e.g., Gaussian).
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Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

Image Segmentation

11

Uncertainty

PredictionTrue Segments

Image

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.

2

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for 
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Reduce Overfitting
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Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

our method overfit
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Step 1: Optimize Marginal-Likelihood wrt. hyperparameters Step 2: Compare marginal likelihood of models

steps steps
MargLik = �117
train accuracy: 92%
test accuracy:89%

MargLik = �165
train accuracy:99%
test accuracy: 86%

Figure 2: Proposed method for model selection using the marginal likelihood. In Step 1, we apply our online algorithm
(Alg. 1) to optimize the marginal likelihood estimate (Eq. 3) with respect to the differentiable hyperparameters (here: prior
precision �i per layer and softmax temperature T ). In Step 2, we compare the resulting model (left) to an overfitting model
(right) with higher training accuracy but lower test accuracy; both models have the same architecture. The Laplace-GGN
marginal likelihood estimate log q(D|M) correctly identifies the model that generalizes better. See Sec. 4.1 for details.

Note that the parameters ✓⇤ in Eq. 3 are assumed to be the
MAP estimate, however this is not true during training at
some ✓. We also try another method derived from a local
integration in App. A.1 instead, but empirically this does not
give good results and is more expensive. Theoretically, joint
optimization of ✓ and M

@ could be achieved with second-
order optimization methods which resemble a step of local
integration. We discuss the choice of hyperparameters of
Alg. 1 in Sec. 3.4.

3.2. Step 2: Model selection after training

To choose between two discrete model alternatives, such
as different architectures, we compare their marginal likeli-
hood estimate after training. This step is a basic hypothesis
test where we compare two models M and M

0 and choose
the more likely model given the data according to the likeli-
hood ratio p(D|M)/p(D|M

0), which is the most powerful
statistical test for this purpose (Neyman & Pearson, 1933).
In terms of the marginal likelihood, we only need to choose
the model with a higher value (cf. Fig. 1 and Fig. 2 (right)).

3.3. Scalable Laplace approximations

Efficient determinant computation. Scalable marginal
likelihood estimation (Eq. 3) relies on an efficient computa-
tion of the determinant of the GGN or EF approximation of
the Hessian (Eqs. 4 and 5). When N is small, we can use
the Woodbury matrix identity to rewrite the determinant of
the Hessian (a P ⇥ P matrix) in terms of determinants of
matrices whose size only depends on the number of data
points N and outputs (e.g., classes) C instead:
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The determinants |P✓| (though still P ⇥ P ) and |L✓| are
usually cheap to compute as the prior p(✓) often factorizes
across parameters and L✓ is block-diagonal. When neither
O(N3) nor O(P 3) are tractable we consider the following
structured GGN approximations of different sparsities.

Kronecker-factored Laplace. The Kronecker-factored
(KFAC) GGN approximation is based on a block-diagonal
approximation to H

GGN
✓ and is specified by a Kronecker

product per layer (Martens & Grosse, 2015; Botev et al.,
2017). The GGN of the l-th layer of the neural network
is approximated as [JT

✓L✓J✓]l ⇡ Ql ⌦ Wl where Ql is
computed from the gradient by backpropagation and Wl de-
pends on the input to the l-th layer. Wl and Ql are quadratic
in the l-th layer’s input and output size, respectively. Let
q

(l)
2 RDl and w

(l)
2 RD0

l be the eigenvalues of Ql and
Wl, respectively. If the prior Hessian P✓ is isotropic per
layer, that is, [P✓]l = p(l)

✓ Il, then we can compute the deter-
minant for the Laplace-GGN efficiently as

|H
GGN
✓ | ⇡ |H

KFAC
✓ | =

Y

l

Y

ij

q
(l)
i w

(l)
j + p(l)

✓ . (9)

In contrast to the typical use of Kronecker-factored approx-
imations in optimization (Martens & Grosse, 2015; Botev
et al., 2017) and approximate inference (Ritter et al., 2018;
Zhang et al., 2018), we avoid damping which would distort
the Laplace-GGN (cf. App. A.3 for discussion and abla-
tion experiment). Computationally, the Kronecker-factored
Laplace-GGN is cheaper than the full Laplace-GGN because
we only need to decompose matrices that are quadratic in
the number of neurons per layer. This number typically does
not exceed a few thousand.

Diagonal Laplace relies on a simple diagonal form of
GGN or EF which allows cheap computation of the determi-
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Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

our method overfit
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Step 1: Optimize Marginal-Likelihood wrt. hyperparameters Step 2: Compare marginal likelihood of models

steps steps
MargLik = �117
train accuracy: 92%
test accuracy:89%

MargLik = �165
train accuracy:99%
test accuracy: 86%

Figure 2: Proposed method for model selection using the marginal likelihood. In Step 1, we apply our online algorithm
(Alg. 1) to optimize the marginal likelihood estimate (Eq. 3) with respect to the differentiable hyperparameters (here: prior
precision �i per layer and softmax temperature T ). In Step 2, we compare the resulting model (left) to an overfitting model
(right) with higher training accuracy but lower test accuracy; both models have the same architecture. The Laplace-GGN
marginal likelihood estimate log q(D|M) correctly identifies the model that generalizes better. See Sec. 4.1 for details.

Note that the parameters ✓⇤ in Eq. 3 are assumed to be the
MAP estimate, however this is not true during training at
some ✓. We also try another method derived from a local
integration in App. A.1 instead, but empirically this does not
give good results and is more expensive. Theoretically, joint
optimization of ✓ and M

@ could be achieved with second-
order optimization methods which resemble a step of local
integration. We discuss the choice of hyperparameters of
Alg. 1 in Sec. 3.4.

3.2. Step 2: Model selection after training

To choose between two discrete model alternatives, such
as different architectures, we compare their marginal likeli-
hood estimate after training. This step is a basic hypothesis
test where we compare two models M and M

0 and choose
the more likely model given the data according to the likeli-
hood ratio p(D|M)/p(D|M

0), which is the most powerful
statistical test for this purpose (Neyman & Pearson, 1933).
In terms of the marginal likelihood, we only need to choose
the model with a higher value (cf. Fig. 1 and Fig. 2 (right)).

3.3. Scalable Laplace approximations

Efficient determinant computation. Scalable marginal
likelihood estimation (Eq. 3) relies on an efficient computa-
tion of the determinant of the GGN or EF approximation of
the Hessian (Eqs. 4 and 5). When N is small, we can use
the Woodbury matrix identity to rewrite the determinant of
the Hessian (a P ⇥ P matrix) in terms of determinants of
matrices whose size only depends on the number of data
points N and outputs (e.g., classes) C instead:
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The determinants |P✓| (though still P ⇥ P ) and |L✓| are
usually cheap to compute as the prior p(✓) often factorizes
across parameters and L✓ is block-diagonal. When neither
O(N3) nor O(P 3) are tractable we consider the following
structured GGN approximations of different sparsities.

Kronecker-factored Laplace. The Kronecker-factored
(KFAC) GGN approximation is based on a block-diagonal
approximation to H

GGN
✓ and is specified by a Kronecker

product per layer (Martens & Grosse, 2015; Botev et al.,
2017). The GGN of the l-th layer of the neural network
is approximated as [JT

✓L✓J✓]l ⇡ Ql ⌦ Wl where Ql is
computed from the gradient by backpropagation and Wl de-
pends on the input to the l-th layer. Wl and Ql are quadratic
in the l-th layer’s input and output size, respectively. Let
q

(l)
2 RDl and w

(l)
2 RD0

l be the eigenvalues of Ql and
Wl, respectively. If the prior Hessian P✓ is isotropic per
layer, that is, [P✓]l = p(l)

✓ Il, then we can compute the deter-
minant for the Laplace-GGN efficiently as
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✓ | =

Y

l

Y

ij

q
(l)
i w

(l)
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In contrast to the typical use of Kronecker-factored approx-
imations in optimization (Martens & Grosse, 2015; Botev
et al., 2017) and approximate inference (Ritter et al., 2018;
Zhang et al., 2018), we avoid damping which would distort
the Laplace-GGN (cf. App. A.3 for discussion and abla-
tion experiment). Computationally, the Kronecker-factored
Laplace-GGN is cheaper than the full Laplace-GGN because
we only need to decompose matrices that are quadratic in
the number of neurons per layer. This number typically does
not exceed a few thousand.

Diagonal Laplace relies on a simple diagonal form of
GGN or EF which allows cheap computation of the determi-

Bayesian DLStandard DL

Left figure is cross-validation. Right figure is“Marginal Likelihoods”.



Bayesian (Principles for) Learning Machines

• Uncertainty
– What you don’t know now, can hurt you later

• Learning
– Derive learning-algorithms from Bayes

• Knowledge
– Extract knowledge as memorable examples
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Bayesian Learning Rule
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Bayes learning rule:

Natural and Expectation parameters of 
an exponential family distribution q

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” AIstats (2017).

2. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft 
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)

Deep Learning algo: ✓  ✓ � ⇢H
�1
✓ r✓`(✓)

<latexit sha1_base64="H0nVksRm1FdAubJ+3atcm+Pshdw="></latexit>

min
✓

`(✓)
<latexit sha1_base64="rype1vC2qD2EpLGjK4ts6O9bHo8=">AAACBnicbVDLSgNBEJyN7/ha9SjCYBAihrCr+DhJwItHBaOBbAizk95kyOzsMtMrhOBJD/6KlxwU8eDFb/Dm3zhJPPgqaCiquunuClMpDHreh5ObmJyanpmdy88vLC4tuyurlybJNIcqT2SiayEzIIWCKgqUUEs1sDiUcBV2T4b+1TVoIxJ1gb0UGjFrKxEJztBKTXcjiIVqBtgBZDQoBSUagJTFsbDddAte2RuB/iX+FylUDl5f7qKdwVnTfQ9aCc9iUMglM6bueyk2+kyj4BJu8kFmIGW8y9pQt1SxGEyjP3rjhm5ZpUWjRNtSSEfq94k+i43pxaHtjBl2zG9vKP7n1TOMjhp9odIMQfHxoiiTFBM6zIS2hAaOsmcJ41rYWynvMM042uTyNgT/98t/yeVu2d8r75/bNI7JGLNknWySIvHJIamQU3JGqoSTW/JAHsmTc+8MnGfnZdyac75m1sgPOG+fi4ublA==</latexit>

min
q2Q

Eq(✓)[`(✓)]�H(q)
<latexit sha1_base64="W6PRcm3r6WEIWwkgFlA7ZYELDSE="></latexit>

vs

� �� ⇢rµ (Eq[`(✓)]�H(q))
<latexit sha1_base64="ZgoUih72jNp2X1gy1YFrJC9GVEM=">AAACYHicbVFNa9RAGJ6kfqxra7d608toEXYPLklF2pMUitBjBbct7ITwZvJmd+jkozNvXJaQg2fP/jFvHrz4S5xkK2jrCwMPz/N+PpNUWlkKgh+ev3Xv/oOHg0fDx9s7T3ZHe0/PbVkbiTNZ6tJcJmBRqwJnpEjjZWUQ8kTjRXJ10ukXn9FYVRafaF1hlMOiUJmSQI6KRyuhXXIKXGjMCIwpV/wP9YYLsyy5KCDREDeN6Mc1BtOWi7xu275m7DDQMkmaD218zecCtR4LWiLBJOp6dKoE3Zy24+uJa6kWS5rEo/1gGvTB74LwBuwfv1zpryffvpzFo+8iLWWdY0FSg7XzMKgoasCQkhrboagtViCvYIFzBwvI0UZNv3HLXzsm5Vlp3CuI9+zfFQ3k1q7zxGV229rbWkf+T5vXlB1FjSqqmrCQm0FZrTmVvHObp8qgJL12AKRRblcul2BAkvuToTMhvH3yXXB+MA3fTt99dG68Z5sYsBfsFRuzkB2yY3bKztiMSfbT2/K2vR3vlz/wd/29Tarv3dQ8Y/+E//w3iHi5FA==</latexit>

Exponential-family Approx.

Natural Gradient

Entropy

By changing Q, we can recover DL algorithms (and more)

https://emtiyaz.github.io/papers/learning_from_bayes.pdf
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Bayesian learning rule: � �� ⇢rµ (Eq[`(✓)]�H(q))
<latexit sha1_base64="ZgoUih72jNp2X1gy1YFrJC9GVEM="></latexit>

Khan and Rue. “Learning-
Algorithms from Bayesian 
Principles” (2020)

Work in progress 
(draft available at https://
emtiyaz.github.io/papers/
learning_from_bayes.pdf)

We can compute 
uncertainty using a 
variant of Adam.

Table 1: A summary of learning algorithms derived from BLR. For each algorithm, we choose a posterior
approximation and make a few algorithmic choices and/or approximations to the gradient rµEqt(✓)[·]. We
also derive some new extensions of existing algorithms (marked with “(New)”). Details on abrreviations:
cov. ! covariance, STE ! Straight-Through-Estimator, VI ! Variational Inference, VMP ! Variational
Message Passing.

Learning Algorithm Posterior Approx. Algorithmic Approx. Sec.

Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta approx. 1.4
Newton’s method Gaussian —–“—– 1.4
Multimodel optimization (New) Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta approx., Stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta approx., Stochastic approx.,

Hessian approx., Square-root scal-
ing, Slow-moving scale vectors

4.2,
4.3

Dropout Mixture of Gaussians Delta approx., Stochastic approx.,
Responsibility approx.

4.4

STE Bernoulli Delta approx., Stochastic approx. 4.6
Online Gauss-Newton (OGN)
(New)

Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.5

Variational OGN (New) —–“—– Remove Delta approx. from OGN 4.5
Bayesian Binary NN (New) —–“—– Remove Delta approx. from STE 4.6

Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate ⇢t = 1 5.1
Laplace’s method Gaussian Delta approx. 5.2
Expectation-Maximization Exp-Family + Gaussian Delta approx. for the parameters 5.3
Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local rate ⇢t = 1 5.4
VMP —–“—– Set learning rate ⇢t = 1 5.4
Non-Conjugate VMP —–“—– —–“—– 5.4
Non-Conjugate VI (New) Mixture of Exp-family None 5.5

2 Bayesian Learning Rule

This section contains two derivations of the BLR. First, we interpret it as a natral-gradient descent
using a second order expansion of the KLD, which strengthen the intuition about the BLR. Secondly, we
do a more formal derivation using a mirror-descent algorithm leveraging the connection to information
geometry and where we can bypass the need for doing the second order approximation of the KLD.

5

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

Code available at https://github.com/team-approx-bayes/dl-with-bayesFigure 1: Comparing VOGN [22], a natural-gradient VI method, to Adam and SGD, training ResNet-
18 on ImageNet. The two left plots show that VOGN and Adam have similar convergence behaviour
and achieve similar performance in about the same number of epochs. VOGN achieves 67.38% on
validation compared to 66.39% by Adam and 67.79% by SGD. Run-time of VOGN is 76 seconds per
epoch compared to 44 seconds for Adam and SGD. The rightmost figure shows the calibration curve.
VOGN gives calibrated predictive probabilities (the diagonal represents perfect calibration).

We demonstrate practical training of deep networks by using recently proposed natural-gradient VI38

methods. These methods resemble the Adam optimiser, enabling us to leveraging existing techniques39

for initialisation, momentum, batch normalisation, data augmentation, and distributed training. As a40

result, we obtain similar performance in about the same number of epochs as Adam when training41

many popular deep networks (e.g., LeNet, AlexNet, ResNet) on datasets such as CIFAR-10 and42

ImageNet. See Fig. 1 for Imagenet. The results show that, despite using an approximate posterior, the43

training methods preserve the benefits of Bayesian principles. Compared to standard deep-learning44

methods, the predictive probabilities are well-calibrated and uncertainties on out-of-distribution45

inputs are improved. Our work shows that practical deep learning is possible with Bayesian methods46

and aims to support further research in this area.47

Related work. Previous VI methods, notably by Graves [15] and Blundell et al. [4], require signifi-48

cant implementation and tuning effort to perform well, e.g., on convolution neural networks (CNN).49

Slow convergence is found to be problematic for sequential problems [43]. There appears to be no50

reported results with complex networks on large problems, such as ImageNet. Our work solves these51

issues by borrowing deep-learning techniques and applying them to natural-gradient VI [22, 51].52

In their paper, Zhang et al. [51] also employed data augmentation and batch normalisation for a53

natural-gradient method called Noisy K-FAC (see Appendix A) and showed results on VGG on54

CIFAR-10. However, a mean-field method called noisy Adam was found to be unstable with batch55

normalisation. In contrast, we show that a similar method, called Variatonal Online Gauss-Newton56

(VOGN), proposed by Khan et al. [22], works well with such techniques. We show results for57

distributed training with noisy K-FAC on Imagenet, but do not provide extensive comparisons. Many58

of our techniques can be used to speed-up noisy K-FAC too, which is promising.59

Many other approaches have recently been proposed to compute posterior approximations by training60

deterministic networks [44, 36, 37]. Similarly to MC-dropout, the posterior approximation is not61

flexible and it is difficult to improve the accuracy of the posterior approximations. On the other hand,62

VI offers a much more flexible alternative to apply Bayesian principles to deep learning.63

2 Deep Learning with Bayesian Principles and Its Challenges64

The success of deep learning is partly due to the availability of scalable and practical methods for65

training deep neural networks (DNNs). Network training is formulated as an optimisation problem66

where a loss between the data and the DNN’s predictions is minimised. For example, in a supervised67

learning task with a dataset D of N inputs xi and corresponding outputs yi of length K, we minimise68

a loss of the following form: ¯̀(w) + �w
>
w, where ¯̀(w) := 1

N

P
i `(yi, fw(xi)), fw(x) 2 RK

69

denotes the DNN outputs with weights w, `(y, ŷ) denotes a differentiable loss function between an70

2

VOGN: A modification of Adam but match the 
performance on ImageNet

https://github.com/team-approx-bayes/dl-with-bayes
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)



18

Available at
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
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Bayesian (Principles for) Learning Machines

• Uncertainty
– What you don’t know now, can hurt you later

• Learning
– Derive learning-algorithms from Bayes

• Knowledge
– Extract knowledge as memorable examples

20



Relevance of Data Examples
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Which examples are most relevant for the 
classifier? Red circle vs Blue circle.



Model view vs Data view
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Model
view
Data
view
(Very 
much 
like 

SVMs)

Bayes “automatically” defines data-relevance

(By Roman Bachmann)
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neural network

NX

i=1
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“Dual” variables obtained from
(For Gaussian approx, obtained from Jacobian, residual etc.) 

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurIPS (2019).

• Gaussian approx fom Bayes learning rule turn NN into 
Linear models & Gaussian Process (GPs) [1].

•  define the “relevance” of the data examples. We call 
more relevant ones the “memorable examples”.

• Natural-gradients give “dual variables” (Bayes Duality)

σ2
i

rµEq[`i(✓)]
<latexit sha1_base64="9mFcWkcI4g6ybK+BtLiMDt4FZcQ="></latexit>
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.
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CIFAR-10

Least Memorable Most Memorable



Life-Long Learning with Bayes
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1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Identify memorable 
examples, and make 
sure that predictions 

don’t change too much



Functional Regularization of 
Memorable Past (FROMP)
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Task 1

Task 2
Task 3

Regularize the function outputs.
Simply adds an additional term in Adam.

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020



Federated 
learning

Bayes is indispensable for an AI that 
learns as efficiently as we do

28

Continual
Learning

Reinforcement 
Learning

Online 
learning

Reasoning

Explainable 
Interpretable

Causality

Active 
learning

Bayesian 
Principles
(Explore-exploit)



How to design AI that learn like us?

• Uncertainty -> Learning -> Knowledge
• Three questions

– Q1: What do we know? (model)
– Q2: What do we not know? (uncertainty)
– Q3: What do we need to know? (action & exploration)

• Posterior approximation is the key
– (Q1) Models == representation of the world
– (Q2) Posterior approximations == representation of the model
– (Q3) The Bayes-dual representation will enable 

• represent learned knowledge, 
• reuse them in novel situations, 
• interact with the environment to collect new knowledge

29
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Nonlinear models work extremely well
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https://team-approx-
bayes.github.io/

We have openings for “part-
time” student positions and 
also a postdoc/tech-staff 
position.

Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/
https://team-approx-bayes.github.io/

