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Al that learn like humans

Learn and adapt quickly throughout their lives



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Bayesian Principles

l This talk

Human learning ;A Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

My current research focuses on reducing this gap!

1. Parisi, German |., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

2. Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)



BaVESian (Principles for) Learning Machines

* Uncertainty
— What you don’t know now, can hurt you later

* Learning
— Derive learning-algorithms from Bayes

* Knowledge
— Extract knowledge as memorable examples



Which is a good classifier?




Input 2

Which is a good classifier?

Misclassified by the red
/ line, but not by the blue

What you don’t know
now, can hurt you later
“Uncertainty matters”




Uncertainty of Deep Nets

Iteration 1
0. One Model vs Many.
A key idea in Bayes is to
5- estimate distributions
~ - over model parameters
5 &op =2 | (e.g., Gaussian).
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019). 10



Image Segmentation

Uncertainty

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Reduce Overfitting

Standard DL Bayesian DL

Left figure is cross-validation. Right figure is“Marginal Likelihoods”.
12



BaVESian (Principles for) Learning Machines

* Uncertainty
— What you don’t know now, can hurt you later

* Learning
— Derive learning-algorithms from Bayes

* Knowledge
— Extract knowledge as memorable examples



Bayesian Learning Rule

Entropy

min £(6) vs min E ) [(0)] — H(q)
Exponential-family Approx.

Deep Learning algo: § « 6 — pH, "V £(6)
Bayes learning rule: A <~ A — pV, (E,[£(0)] — H(q))

| t ™~ Natural Gradient
Natural and Expectation parameters of

an exponential family distribution g

By changing Q, we can recover DL algorithms (and more)

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).

2. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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https://emtiyaz.github.io/papers/learning_from_bayes.pdf

Bayesian learning rule: X < X — oV, (E,[¢(0)] — H(q))

Learning Algorithm Posterior Approx. Algorithmic Approx. Sec.
Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta approx. 1.4

Newton’s method Gaussian “ 14

Multimodel optimization ew)y Mixture of Gaussians “ 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent — Gaussian (fixed cov.) Delta approx., Stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) |Delta approx., Stochastic approx., | 4.2,
Hessian approx., Square-root scal- | 4.3
ing, Slow-moving scale vectors

Dropout Mixture of Gaussians Delta approx., Stochastic approx., 4.4
Responsibility approx.

STE Bernoulli Delta approx., Stochastic approx. 4.6

Online Gauss-Newton (OGN) | Gaussian (diagonal cov.) | Gauss-Newton Hessian approx. in| 4.5

(New) Adam & no square-root scaling

Variational OGN (new) “ Remove Delta approx. from OGN | 4.5

Bayesian Binary NN (New) ‘ Remove Delta approx. from STE 4.6

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate p = 1 5.1

Laplace’s method Gaussian Delta approx. 5.2

Expectation-Maximization Exp-Family + Gaussian Delta approx. for the parameters 5.3

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local rate pr =1 5.4

VMP “ Set learning rate p, = 1 5.4

Non-Conjugate VMP “ ‘ 5.4

Non-Conjugate VI (vew) Mixture of Exp-family None 5.5

Khan and Rue. “Learning-
Algorithms from Bayesian
Principles” (2020)

We can compute
uncertainty using a
variant of Adam.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Ilteration 1
70F
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> 60}
5] o
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;" —— Adam S 30
-'_ —— VOGN
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Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)7



Learning-Algorithms from Bayesian Principles

Mohammad Emtiyaz Khan
RIKEN center for Advanced Intelligence Project
Tokyo, Japan

Héavard Rue
CEMSE Division

King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Version of November 3, 2020
DRAFT ONLY

Abstract

We show that many machine-learning algorithms are specific instances of a single algorithm
called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range
of algorithms from fields such as optimization, deep learning, and graphical models. This includes
classical algorithms such as ridge regression, Newton’s method, and Kalman filter, as well as modern
deep-learning algorithms such as stochastic-gradient descent, RMSprop, Adam, and Dropout. The key
idea is to estimate posterior approximations using the Bayesian learning rule. Different approximations
then result in different algorithms and further algorithmic approximations give rise to variants of
those algorithms. Our work shows that Bayesian principles not only unify, generalize, and improve
existing learning-algorithms, but also help us design new ones.

Available at
https://emtiyaz.github.io/papers/learning_from_bayes.pdf
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NeurlPS 2019
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Human Learning at
the age of 6 months.
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From System 1 Deep Learning to System2  NeurlPS Workshop on Machine Learning
Deep Learning for Creativity and Design...

by Yoshua Bengio by Aaron Hertzmann, Adam Roberts, ...
17,953 views - Dec 11,2019 9,654 views - Dec 14, 2019
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BAYESIAN PRINCIPLES DEEP NEURAL NETWORK: FROM
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BaVESian (Principles for) Learning Machines

* Uncertainty
— What you don’t know now, can hurt you later

* Learning
— Derive learning-algorithms from Bayes

* Knowledge
— Extract knowledge as memorable examples



Relevance of Data Examples

Which examples are most relevant for the
classifier? Red circle vs Blue circle.
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Model view vs Data view

Bayes “automatically” defines data-relevance

A P Data

I E view
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(By Roman Bachmann)



Bayes Duality

» Gaussian approx fom Bayes learning rule turn NN into
Linear models & Gaussian Process (GPs) [1].

Z€ vir fol2i)) > %[@z‘ — ¢i(z:) ' 0]

. A
=1  neural network =1 ?Z | |

“Dual” variables obtained from V ,E,[¢;(0)]
(For Gaussian approx, obtained from Jacobian, residual etc.)

. al.z define the “relevance” of the data examples. We call
more relevant ones the “memorable examples”.

* Natural-gradients give “dual variables” (Bayes Duality)

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 23



Most Memorable
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Least Memorable

Most Memorable

25



Life-Long Learning with Bayes

10+ o

|dentify memorable

——— examples, and make
sure that predictions

don’t change too much

.
o*

.
.
--------

Input 1

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 26



Functional Regularization of
Memorable Past (FROMP)

Regularize the function outputs.
Simply adds an additional term in Adam.

1. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 27



Bayes is indispensable for an Al that
learns as efficiently as we do

Continual Active
Learning learning
Online
BayeS|an learning

Principles

(Explore-exploit) _
Reinforcement
Learning
Federated
learning

28



How to design Al that learn like us?

* Uncertainty -> Learning -> Knowledge

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q3: What do we need to know? (action & exploration)

* Posterior approximation is the key
— (Q1) Models == representation of the world
— (Q2) Posterior approximations == representation of the model
— (Q3) The Bayes-dual representation will enable
* represent learned knowledge,
* reuse them in novel situations,

* Interact with the environment to collect new knowledge
29



Gaussian-Process-Based Emulators for Building Performance Simulation

Parag Rastogi’*f Mohammad Emtiyaz Khan?, Marilyne Andersen’
'Interdisciplinary Laboratory of Performance-Integrated Design (LIPID),
Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
2RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.

Abstract

In this paper, we present an emulator of a building-
energy performance simulator. Previous work on em-
ulators for this application has largely focused on lin-
ear models. Since the simulator itself is a collection of
differential equations, we expect non-linear models to
be better emulators than linear models. The emulator
we present in this paper is based on Gaussian-process
(GP) regression models. We show that the proposed
non-linear model is 3-4 times more accurate than lin-
ear models in predicting the energy outputs of the
simulator. For energy outputs in the range 10-800
kWh/m?, our model achieves an average error of 10-
25 kWh/m? compared to an average error of 30-100
kWh/m? from using linear models. In addition to be-
ing very accurate, our emulator also heavily reduces
the computational burden for building designers who
rely on simulators. By providing performance feed-
back for building designs very quickly (in just a few
milliseconds), we expect our approach to be particu-
larly useful for exercises that involve a large number
of simulations, e.g., Uncertainty Analysis (UA), Sen-
sitivity Analysis (SA), robust design, and optimisa-

Nonlinear models work extremely well
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