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Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too slow or quick to adapt
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https://www.youtube.com/watch?v=TxobtWAFh8o

Adaptation in Machine Learning

* Even a small change may need retraining

* Huge amount of resources are required only
few can afford (costly & unsustainable) [1,2, 3]

* Difficult to apply in “dynamic” settings (robotics,
medicine, epidemiology, climate science, etc.)
* QOur goal is to solve such challenges
— Help in building safe and trustworthy Al

— To reduce “magic” in deep learning (DL)

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s



https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s

Bayesian Learning Rule [1]

* Bridge DL & Bayesian learning [2-5]
— SOTA on GPT-2 and ImageNet [5]
* Improve other aspects of DL [5-7]
— Calibration, uncertainty, memory etc.
— Understand and fix model behavior
» Towards human-like quick adaptation

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Khan, et al. Fast and scalable Bayesian deep learning by weight-perturbation in Adam, ICML (2018).
3. Osawa et al. Practical Deep Learning with Bayesian Principles, NeurlPS (2019).

4. Lin et al. Handling the positive-definite constraints in the BLR, ICML (2020).

5. Shen et al. Variational Learning is Effective for Large Deep Networks, Under review.

6. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

7. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)



GPT-2 with Bayes

Better performance & uncertainty at the same cost [5]
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. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
. Shen et al. Variational Learning is Effective for Large Deep Networks, Under review.
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Exponential Family

Natural Sufficient Expectation
parameters Statistics parameters
b }
a(6) o exp [ATT(6)] = E,[T(0)]

N(Olm,S™1) o< exp

1 T
—5(9 —m) S0 — m)]

X exp [(Sm)TQ + Tr (—geeT)]

" Gaussian distribution q(0) := N(0m,571)
Natural parameters A= {Sm,—-5/2}
_ Expectation parameters 1 := {Eq(6),E,(06")}

J

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 9



Bayes and Conjugate Computations [1]

Multiplication of distribution = addition of (natural) params
Bayes rule: posterior o lik X prior
oApost T(0) ¢ AT (0) ¢ pAprior T(0)
log-posterior = log-lik 4+ log-prior
Apost = Alik T Aprior
This idea can be generalized through natural-gradients.

Apost = V E [log lik + log-prior]

Natural gradlent Posterlor ‘approximation”

1. Khan and Lin, Conjugate computation variational inference, AISTATS, 2017.



Bayes Rule as (Natural) Gradient
Descent

)\post — )\lik =+ )\prior
Expected log-lik and log-prior are linear in p [1]
E, [log-lik] = A\ Eq[T(0)] = A
Gradient wrt i is simply the natural parameter
VMEQ [log—lik] — )\lik
So Bayes’ rule can be written as (for an arbitrary q)
Apost — V,E,[log-lik 4 log-prior|

As an analogy, think of least-square = 1-step of Newton

1. Khan, Variational-Bayes Made Easy, AABI 2023.



Approximate Bayes

Bayes rule: posterior o lik X prior
Bayes as min | (log-lik] + KL(g]|prio
optimization [1], ~ €< q[log-1ik] + KL (g]|prior)

aka variational

iInference: . .
log-lik + log-prior
. )
o 0 min By [£8)] ~ (g
: 3 Entropy
Bayesian . — .
Iearning' Posterior approximation (expo-family)

1. Zellner, Optimal information processing and Bayes’s theorem, The American Statistician, 1988.
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The Bayesian Learning Rule

in £(60 vs min K v(0) — H(g
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of q

A d— oV, 0) - H(g) )

_— A

| . |
Old belief  New information = natural gradients

Exploiting posterior’s information geometry to derive existing algorithms
as special instances by approximating q and natural gradients.

1. Khan and Rue, The Bayesian Learning Rule, JMLR, 2023

2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017). .



Warning!

* This natural gradient is different from the one
what we (often) encounter in machine learning
for Maximum-Likelihood

— In MLE, the loss is the negative log
probabillity distribution

min — log g(0) = F(6)~' Vlog q(6)

— Here,e loss and distribution are two different
entities, even possible unrelated

min E [£(0)] — #(q) = F(A)~' V,E,[£(0)]
q



Gradient Descent from
Bayesian Learning Rule

(Euclidean) gradients as natural
gradients

15



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

16



See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from BLR

GD:

BLR:

“Global” to “local” )
(the delta method)

B [(6)] ~ L(m)

0« 60— pVel(0)

m < m — pV,f(m)

m < m — pV;,Eq[€(0)]

A= A—pV, (Eq[4(9)] — H(q))

Derived by choosing Gaussian with fixed covariance

_Entropy

" Gaussian distribution () := N(m, 1)
Natural parameters
Expectation parameters i :=E,[0] =m

Ai=m

H(q) = log(2m)/2

J

17



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from BLR
Newton’s method: 0 < 6 — H, " [Val(0)]

(Sm — (1 - )Sml— pPVE, () Eq[l(0)]
- —S — QE2)8) P IDY ooy EEP)
e N— X (B V(B @ q)) (—V,.H(q) = A

Derived by choosing a multivariate Gaussian
1 )
)

" Gaussian distribution g(6) := N (8|m, S
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 18



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from BLR

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]

(o m — pS_lvmﬁ(my

S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, (007 Eq€(0)] = Eq[Ho|
(Sm — (1= p)Sm — pVi, (5, Bq[(0) J
S+ (1—p)S— P2VE 907 Eq 4(0)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)

19



See Section 4.2 in Khan and Rue, 2021

RMSprop/Adam from BLR

RMSprop BLR for Gaussian approx
s (1=p)s+p[VLO)])* S (1—p)S+ p(Hy)
00— al/s+06)"IVeH) m<—m—aSTVel(h)

To get RMSprop, make the following choices
* Restrict covariance to be diagonal

* Replace Hessian by square of gradients

* Add square root for scaling vector

For Adam, use a Heavy-ball term with KL
divergence as momentum (Appendix E in [1])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



BLR for large deep networks

RMSprop/Adam BLR variant called
Improved Variational Online Newton (IVON)

g+ V() § « V() where 0 ~ N (m,c?)
h « §° heg-(0—m)/o>
h+ (1= p)h+ ph h (1—p)h+ph +p°(h —h)*/(2(h +9))

0« 0—a(g+om)/(Vh+68) m+m—a(@+om)/(h+9)
0% 1/(N(h+9))

Code to be released this month!
Initialization of h (& scaling with N) matter.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

4. Shen et al. “Variational Learning is effective for large neural networks.” (Under review) 71



IVON [3] got 1st prize in NeurlPS 2021
Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Méllenhoffl, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl!, Mohammad Emtiyaz Khan1

| AT
: 57y ;’.-"A"’;a a
' \ ; ~ )

1 Approximate Bayesian Inference Team 2 Computer Vision Group
RIKEN Center for Al Project, Tokyo, Japan Technical University of Munich, Germany

Dec 14th, 2021 — NeurlPS Workshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020). 29



GPT-2 with Bayes

Better performance and uncertainty at the same cost

—— BLR (IVON)[3]
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Shen et al. “Variational Learning is effective for large neural networks.” (Under review) 23
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Validation Perplexity
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GPT-2 with Bayes

Posterior averaging improve the result. Can also train
on low-precision (a stable optimizer)

-— Predictive Posterior
-== Mean

Train loss

2 4 8 16 32 04
# MC Samples

B
o

3.0

- |\VON (float32)
m— |\/ON (bf16)
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Shen et al. “Variational Learning is effective for large neural networks.” (Under review)

24



Validation Error

ImageNet on ResNet-50 (25.6M)

75
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2% better accuracy over AdamW and 1% over
SGD. Better calibration (ECE of 0.022 vs 0.066)
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ImageNet on ResNet-50 (25.6M)

No severe overfitting like AdamW while improving
accuracy over SGD consistently & better uncertainty

Dataset & Model Epochs  Method Top-1 Acc. 1 Top-5 Acc. T NLL | ECE | Brier |
AdamW 74.56;|;0.24 92.05i0_17 1.018:|:0_012 0.043i0,001 0.352:&0,003
100 SGD 76.1810.09 92941005 092840003 0.01940.001 0.330+0.001
IVON @mean 76.14:|:0.11 92.83:|:0.04 0.934i0,002 0-025i0.001 0.330:|:0,001
ImageNet-lk IVON 76.24;&),09 92.9010,04 0.92510,002 0.015;};0,001 0.330:|:(),001
R t-50
5 oM aarams) AdamW  +2% 75064014 92.372005 101840003 0.06640.002  0.349:0.002
’ 200 SGD +19% 76.63+0.45 93.2140.25 0.917+0.026  0.03840.000  0.326+0.006
IVON @mean 77.30+0.08 93.5840.05 0.884+0.002 0.035+0.002 0.316+0.001
IVON T7.4610 07 93.6810.04 0.869+0.002 0.02210002 0.315+0.001
. AdamW  +15% 47.3340.90 71.5440.05 6.823+0.235 0.42140.008 0.913+0.018
Tinyl Net
ResNet 18 00 SGD #1%61.392015 82301022  1.811i0.010 0.13840.002  0.53640.002
(11M params, wide) IVON@mean 62.4110.15 83.77410.18 1.77640.018 0.150+0.005 0.53240.002
p ’ IVON 62.6810.1¢ 84.12410.24 1.528410010 0.0194+0004 0.49140.001
AdamW  +10% 50.6540.0+ 74.944 ¢ 0 4.48710.0% 0.357+0.0 0.81240.0*
. AdaHessian 55.03i0.53 78.49:|:0_34 2~971j:0.064 0.272i0,005 0.690:&0.008
Tinyl Net
Pi‘l;)l’{::;;%f—l‘leO 200 SGD +2% 89.39+0.50 81.34+0.30 2.04040.040  0.17640.006  0.577+0.007
(4M arams. dee ) IVON @mean 60.85io_39 83.89:|:0.14 1.584io_009 0.053i0,002 0.514:&0.003
p » deep IVON 61.25.045s 84.13.017 1.55040000 0.049.0002 0.51110.003
AdamW  +11% 64.12.10.43 86.85+0.51  3.357+0.071  0.278+0.005  0.61540.008
CIFAR-100 o
ResNet-18 200 SGD +.7% 74.46.10.17 92.66+0.06 1.083+0.007 0.113+0.001 0.376+0.001
(1 M params wide) IVON @mean 74.51:|;0.24 92.7410.19 1.284:|:0.013 0-152:t0.003 0.399j:0,002
’ IVON 75.14 10 34 93.30+0.19 0.91210009 0.02110003 0.344:0003




Sensitivity to data
IS easy to compute
“during” training.

MNIST on MLP.
Also work at large
scale (ImageNet )

| LU T I LT (R I )
— Examples —
Low Sensitivity High Sensitivity

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023



Sensitivity to Training Data

Past information with most influence on the present

Truth
O @Estimated
A

Current

Estimating it without retraining: Using the BLR, we can
recover all sorts of influence criteria used in literature.



Memory Perturbation

How sensitive is a model to its training data?
Deviation (A) = predictionError *predictionVariance

New model

O New data

1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA 1977
2. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023
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Memory Maps using the BLR

Understand generic ML models and algorithms.

Regular examples Unpredictable  Uncertain
000690 o Q@ J o <
v 11 | 7 N1 47
& 2 24 08 7 v oy > 7
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Prediction Variance
1. Tailor, Chang, Swaroop, Nalisnick, Solin, Khan, Memory maps to understand models (under review) 30



A Tool for Data-Scientists

Understand the memory of a model.

31



Predict Generalization during Training

CIFAR10 on ResNet-20 using IVON. SGD or Adam do
not work as well.

1.8 Leave-One-Out
Estimates on
training data
1.2 and during training

l

0 100 200 300
Epochs

NLL




Answering “What-If’ Questions

What if we removed a
class from MNIST?

Estimates on
training data
(no retraining)

V 4

4 ‘.7'

1

9
. 8

6

’_
ez
o ® MLP

[] LeNet

Test Performance (NLL) by

brute-force retraining
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Answering “What-If” Questions

What if we merge fine-tuned large-language models?

6
- Task Arithmetic
e 3
§ O Ours )
& 4
=
8 4
) 1
=
2 010,
é 0.2 0.4 RoBERTa
Gradient mismatch on IMDB

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

34



SAM as an Optimal relaxation of Bayes

sAM:  sup £(6 + ¢)

lel<p

A

Our work:
Fenchel
Biconjugate

Bayes:

/ [EGNJV(O,02)[K(9 + 6)]

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an Optimal Relaxation of Bayes, Under review, 2022
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Bayesian Learning Rule [1]

* Bridge DL & Bayesian learning [2-5]
— SOTA on GPT-2 and ImageNet [5]
* Improve DL [5-7]
— Calibration, uncertainty, memory etc.
— Understand and fix model behavior
» Towards human-like quick adaptation

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).

2. Khan, et al. Fast and scalable Bayesian deep learning by weight-perturbation in Adam, ICML (2018).

3. Osawa et al. Practical Deep Learning with Bayesian Principles, NeurlPS (2019).

4. Lin et al. Handling the positive-definite constraints in the BLR, ICML (2020).

5. Shen et al. Variational Learning is Effective for Large Deep Networks, Under review.

6. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

7. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)
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Human Learning at
the age of 6 months.

by Mohammad Emtiyaz Khan

Deep Learning with
Bayes i an Pri nCi pl es Deep Learning with Bayesian Principles

NeurlPS 2019

Tutorial

#NeurlPS 2019
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FROM SYSTEM 1 DEEP
LEARNING TO SYSTEM 2 DEEP
LEARNING

From System 1 Deep Learning to System 2
Deep Learning

by Yoshua Bengio
17,953 views - Dec 11,2019

DEEP LEARNING WITH
BAYESIAN PRINCIPLES

by Mohammad Emtiyaz Khan

DeC 9 201 9 X 8,084 views - Dec 9, 2019

KO

NEURIPS WORKSHOP ON
MACHINE LEARNING FOR
CREATIVITY AND DESIGN 3.0
2

NeurlPS Workshop on Machine Learning
for Creativity and Design...

by Aaron Hertzmann, Adam Roberts,

9,654 views - Dec 14, 2019

EFFICIENT PROCESSING OF
DEEP NEURAL NETWORK: FROM
ALGORITHMS TO HARDWARE
ARCHITECTURES

Efficient Processing of Deep Neural
Network: from Algorithms to...

by Vivienne Sze
7,163 views + Dec 9, 2019




The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Emtiyaz Khan Julyan Arbel Kenichi Bannai Rio Yokota

Research director Research director Co-PI (Japan side) Co-PI

(Japan side) (France side) (Japan side)
Math-Science Team at

Approx-Bayes team at Statify-team, Inria RIKEN-AIP and Keio Tokyo Institute of

RIKEN-AIP and OIST Grenoble Rhéne-Alpes University Technology

Received total funding of around USD 3 million through JST’s
CREST-ANR (2021-2027) and Kakenhi Grants (2019-2021).
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Team Approx-Bayes

Emtiyaz Khan Thomas Geoffrey Wolfer
Team Leader Méllenhoff Special
Research Scientist  Postdoctoral
Resesarcher

Keigo Nishida Zhedong Liu Peter Nickl
Postdoctoral Postdoctoral Research Assistant
Researcher Researcher

RIKEN BDR

https://team-approx-bayes.qgithub.io/
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Many thanks to our group
members and
collaborators (many not
on this slide).

Hugo Monzén

Maldonado
Postdoctoral
Researcher

Joseph
Austerweil

Visiting Scientist

University of
Winsconsin-
Madison

We are always looking
for new collaborations.

Dharmesh Tailor
Remote

Pierre Alquier
Visiting Scientist
ESSEC Business
School

Collaborator
University of
Amsterdam
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