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Al that can learn like us

Quickly adapt & continue to acquire new skills.

Al that is low-cost, sustainable, transparent,
trustworthy, reliable, composable, modular....
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Why haven’t we solved it with Bayes?

* In theory, Bayes can solve these problems
— By using the posterior uncertainty

* But, these are not Bayesian models

* And scale makes it infeasible

* Are there alternatives for Bayes?



Sensitivity and Uncertainty

« Sensitivity of (variational) posteriors to address uncertainty
during knowledge transfer

— Main point: the sensitivity is (essentially) freely available!
« Model sensitivity to data perturbation (addition/removal)
— Beyond linear regression: conjugate-Bayes [1]
— Beyond conjugacy [1,2]
— For large models (VI for GPT-2, ImageNet) [3]
* Model perturbation: LLM model merging [4-5]
— Federated learning [6] and connections to Bayes-duality
1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)
2. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
3. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)
4. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

5. Moldanado et al. How to Weight Multitask Finetuning? Fast Previews via Bayesian Model-Merging, (2024)
6. Swaroop et al. Connecting Federated ADMM to Bayes, ICLR, 2024



How to represent and adapt the knowledge?
Perturbation, Sensitivity, and Duality

Bayes-Duality
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Model’s Sensitivity to Its Training Data

New model

New data

Model is more sensitive to examples that are
“far enough” (in the uncertain terrirories)

1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA 1977
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Closed-form Expression for Sensitivity

Linear regression ¢; = (y; — x; 0)*/2
[

0, = Ht_l Z Xy, = 0, — Ht\i — Ht_lxi(yi — xiT‘gt\i)

s =1 T \i T -1 T o\i
X (0, = 0)) = x; Hi " x; (y; — %, 0/')

PredictionVariance PredictionError
— v Ig-1 \i
= —xH ™' V£,(6Y)

This result is the basis for most works in deep
learning [2], but these extensions are too narrow
(leave-one-out, at convergence, for data-attribution).

1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA (1977)
2. Koh and Liang. Understanding Black-Box Predictions via Influence Functions. ICML (2017)



A Broader Perspective

Sensitivity is essential to answer “what-if” questions

Data Perturbation: What if we add/remove a class?
All NY times articles? Continual/active learning

Model Perturbation: What if we merge separately
fine-tuned LLMs? Federated/distributed learning

Algorithm perturbation, etc. etc.
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Memory-Perturbation

Broadening data-attribution by
using posterior-sensitivity

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023

Thomas
Moellenhoff
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Exponential Family

Natural Sufficient Expectation
parameters Statistics parameters
b }
a(6) o exp [ATT(6)] = E,[T(0)]

N(Olm,S™1) o< exp

1 T
—5(9 —m) S0 — m)]

X exp [(Sm)TQ + Tr (—geeT)]

" Gaussian distribution q(0) := N(0m,571)
Natural parameters A= {Sm,—-5/2}
_ Expectation parameters 1 := {Eq(6),E,(06")}

J

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 15



Conjugate Exp-Fam Models
Ht o Ht\i = Ht_lxi()’i o xiTHt\i) - = Ht_l V’/ﬂi(gt\i)

We will extend this to posterior’s sensitivity

5 4 q
—7. ] —. [ .
qtoclle”ﬂf g" Ileff Toce"ﬂl
j=0 =0 o
o ATT(0) e(/ltl) 1(6) eﬂ,i 1(0)

"~/

A — /It\i = A,  Lin-regis a special case [1, Thm. 1]

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023



Linear Regression as a special case

q,= N0, H ") T(9) = (6,007)

N e—%HZTHt9+Tr<—%Ht6’«9T> A= (HO, —H,/2)

, . —1 ‘ N\ '

gt = O, H ) &' = (HY6), — H'I2)
e—fl- X e_%(yi_ -

yl.x.T(9+Tr(—%xixl-T89T) ﬂl — (yl'xl’ o 'xlxlT/z)

x;'0)?
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X €

~/

A — /It\i = A — H.0, - Ht\i‘gt\i = YiXi

, , H, — Ht\i — xixiT
0, — 9)’ = Ht_lxi(yl- — xiTHt\’)



This addresses all issues!

Group level sensitive (with just addition)
Ar — /lt\i — Z Z
i€
Holds at every f during online updating

Can be generalized to neural-network training
iterations too (but also to model perturbation and
other types of perturbations).

We need “dual” coordinates: 4 = [Eq[T(Q)]



Going beyond conjugacy
0, — Ht\i = Ht_lxi(yl- — xiTHI\i) = Ht_1 V¢ i(Ht\i)
lt o /11‘\1 — /ff = V/f‘t[eq[_fi]
e lixe O — — ., = /T.TT(@) + const .

— [k, [-7] = /IT,ut+ const .
— Vﬂr[ECIt:_f.: = ﬂi

Using this relation we can recover measures used in
deep learning (Thm 2-4). Available for free!

1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS, 2023



Bayesian Learning Rule (BLR) [1]

Many ML algorithms compute the quantity (approx.).
IOW, they are approximately Bayesian!

q; X H i = = arg min Z [Eq[fj] + KL(ql|py)
=0 qge@ il

5
Z E,[— f] = A= ) Ay

BLR: ﬂflf t To estimate sensitivity,

~ we take a step back
b= (L=pYig+p Y 7 MR
J=0 ﬂtl — /1t ~ = /1i|z

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP — — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
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Improved Variational Online Newton

t
A < (1 _P)ﬁr*‘pz Ajie

RMSprop/Adam BLR [1] variant called IVON [5] /=0
(Improved Variational Online Newton)

g« V(0) § « V() where 0 ~ N (m,c?)

h « §° heg-(0—m)/o>

h+ (1= p)h+ ph h (1—p)h+ph +p°(h —h)*/(2(h +9))

0« 0—a(g+om)/(Vh+6) 4 m+m—a(g+dom)/(h+9)
0% 1/(N(h+9))

Only tune initial value of h (a scalar)
Check out the blog: https://team-approx-bayes.github.io/blog/ivon/

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

4. Shen et al. “Variational Learning is Effective for Large Deep Networks.” ICML (2024) 22



IVON got 1st prize in NeurlPS 2021
Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Méllenhoffl, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl!, Mohammad Emtiyaz Khan1

| AT
: 57y ;’.-"A"’;a a
' \ ; ~ )

1 Approximate Bayesian Inference Team 2 Computer Vision Group
RIKEN Center for Al Project, Tokyo, Japan Technical University of Munich, Germany

Dec 14th, 2021 — NeurlPS Workshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020). 23



GPT-2 with IVON

Better performance & uncertainty at the same cost

= |\/ON [3]
m— AdamW
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024) 24



Drop-in replacement of Adam

https://github.com/team-approx-bayes/ivon

2
“J

import torch
+import ivon

train_loader = torch.utils.data.DatalLoader(train_dataset)
test_loader = torch.utils.data.Dataloader(test_dataset)
model = MLP()

-optimizer
+optimizer

torch.optim.Adam(model.parameters())
ivon.IVON(model.parameters())

for X, y in train_loader:

- for _ in range(train_samples):

+ with optimizer.sampled_params(train=True)
optimizer.zero_grad()
logit = model(X)

loss = torch.nn.CrossEntropyLoss(logit, y) Don’t use BBB
loss.backward() Use IVON!

optimizer.step()




Validation Error
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Better Calibration

2% better accuracy over AdamW and 1% over
SGD. Better calibration (ECE of 0.022 vs 0.066)
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No Severe Overfitting

....like AdamW while improving accuracy over SGD
consistently & better uncertainty

Dataset & Model Epochs  Method Top-1 Acc. 1 Top-5 Acc. T NLL | ECE | Brier |
AdamW 74.56;|;0.24 92.05i0_17 1.018:|:0_012 0.043i0,001 0.352:&0,003
100 SGD 76.1810.09 92941005 092840003 0.01940.001 0.330+0.001
IVON @mean 76.14:|:0.11 92.8310.04 0.934i0,002 0-025i0.001 0.330:|:o,001
ImageNet-lk IVON 76.24;&),09 92.9010,04 0-92510,002 0.015;};0,001 0.330:|:(),001
R t-50
(2";1;1\64 arams) AdamW  +2% 75164014  92.3710.03  1.01810.003 0.06610.002  0.34910.002
' 200 SGD +1% 76.63-+0.45 93.2140.25  0.917+0.026  0.038+0.000  0.326+0.006
IVON @mean 77.30+0.08 93.5840.05 0.884+0.002 0.035+0.002 0.316+0.001
IVON T7.46 10 07 93.68.10.04 0.869410002 0.02210002 0.315+0.001
. AdamW  +15% 47.3340.90 71.5440.05 6.823+0.235 0.42140.008 0.913+0.018
Tinyl Net
Rlelgll\lgtl-algSe ¢ 500 SGD +1% 61.39+0.18 82.30+0.22 1.8114+0.000  0.138+0.002  0.536+0.002
(11M params, wide) IVON @mean 62.41.0.15 83.77+0.18 1.77640.018 0.150+0.005 0.532+0.002
p ’ IVON 62.6810. 16 84.1210.24 1.52810.010 0.01940004 0.49140.001
AdamW  +10% 50.6540.0+ 74.944 ¢ 0 4.48710.0% 0.357+0.0* 0.81240.0
. AdaHessian 55.03i0.53 78.49:|:0_34 2~971j:0.064 0.272i0,005 0.690:&0.008
Tinyl Net
P:,I;)I;;l;%f_lio 200 SGD +2% 99.39-+0.50 81.3410.30  2.040+0.040  0.176+0.006  0.577+0.007
(4M arams. dee ) IVON @mean 60.85io_39 83.89:|:0.14 1.584io_009 0.053i0,002 0.514:&0.003
p » deep IVON 61.25.045s 84.13.017 1.55040000 0.049.0002 0.51110.003
AdamW  +11% 64121043 86.851051  3.357x00m1  0.278+0.005  0.61540.008
CIFAR-100 .
ResNet-18 200 SGD +.7% 74.46.10.17 92.66+0.06 1.083+0.007 0.113+0.001 0.376+0.001
(llM arams wide) IVON @mean 74.51;{;0.24 92.7410.19 1.284:|:0.013 0-152:t0.003 0.399j:0,002
p ’ IVON 7514 051 93.3001019 0.912:0000 0.021:0005 0.34410.003




Llama 2

LoRA Finetuning (7 biliion)
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1. Bai et al. “Variational Low-Rank Adaptation Using IVON”, FITML workshop at NeurlPS 2024



Low Sensitivity

006 00 To estimate sensitivity,

just take a step back
v 1 11 1 /It\i_/lt%_;tih
& 2 242
>33 38

Rd i £
AN 01 &
b N L
PN N4
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aqqqaq

High Sensitivity

AL s N A =

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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Guess the ImageNet class [1]

1. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML, 2024
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High Sensitivity

What class is this?

Low Sensitivity



High Sensitivity

Low Sensitivity



Answering “What-If’ Questions

What if we removed a
class from MNIST?

Estimates on
training data
(no retraining)

V 4

4 ‘.7'

1

9
. 8

6

’_
ez
o ® MLP

[] LeNet

Test Performance (NLL) by

brute-force retraining
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Model Merging %
Given 0, fine-tuned on &, and

6, fine-tuned on &,, merge y %
them (to estimate 0, ,,). | I

Simplest strategy: a,0; + a,0, [1]. 2, D

A generalization is to use a4, + a,4, [3], eg, use
Hessian which is necessarily better [2]
H) 1,0, = oH,0, + 0, H,0,

= 01, — 0, ~ H7,V£,0)) (Thm 1, [2])

1. Wortsman et al. Robust fine-tuning of zero-shot models, CVPR 2022
2. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
3. Maldonado et al. ..... Fast Previews via Bayesian Model-Merging (under review, 2024)



“What-if” we merged models

®)) 6
= — Task Arithmetic
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o 2
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0.2 0.4
Estimate (gradient mismatch) ROBERTa

on IMDB

1. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).
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Bayesian Duality

The variables A, are dual variables (Lagrange
multipliers). In fact, variational posteriors have an

equivalent dual representation in terms of A, [1-4]
Federated Learning

Eg, dual variables in federated 0.,

ADMM automatically emerges /r \

through 4; in variational Bayes [4] 9/ p
_ 1 2

Dy Dy

1. Khan et al. Fast Dual Variational Inference for Non-Conjugate Latent Gaussian Models, ICML, 2013
2. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Processes, NeurlPS, 2019
3. Adam et al. Dual Parameterization of Sparse Variational Gaussian Processes, NeurlPS, 2021

4. Swaroop et al. Connecting Federated ADMM to Bayes, ICLR, 2024
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FedADMM
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Standar

log Partition = Z Leave-5-Out-CV
all s

1. Foong and Holmes, On the marginal likelihood and cross-validation (2019)
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Sensitivity and Uncertainty

« Sensitivity of (variational) posteriors to address uncertainty
during knowledge transfer

— Main point: it is essentially available for free!
* Model sensitivity to training-data perturbation
— Beyond linear regression: conjugate-Bayes [1]
— Beyond conjugacy [2]
— For large models (GPT-2, ImageNet) [3]
* Model perturbation: LLM model merging [4-5]
— Federated learning [6] and connections to duality
1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurlPS (2023)
2. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
3. Shen et al. Variational Learning is Effective for Large Deep Networks, ICML (2024)
4. Daheim et al. Model merging by uncertainty-based gradient matching, ICLR (2024).

5. Moldanado et al. How to Weight Multitask Finetuning? Fast Previews via Bayesian Model-Merging, (2024)
6. Swaroop et al. Connecting Federated ADMM to Bayes, ICLR, 2024 39



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Emtiyaz Khan Julyan Arbel Kenichi Bannai Rio Yokota

Research director Research director Co-PI (Japan side) Co-PI

(Japan side) (France side) (Japan side)
Math-Science Team at

Approx-Bayes team at Statify-team, Inria RIKEN-AIP and Keio Tokyo Institute of

RIKEN-AIP and OIST Grenoble Rhéne-Alpes University Technology

Received total funding of JPY 220M + EUR 500K through the
CREST-ANR grant! Thanks to JST for their generous funding!



Bayes-Duality Workshop

https://bayesduality.github.io/workshop 2024.html

V=
Adam White Alexander Immer Arindam Banerjee Daiki Chijiwa Ehsan Amid Eugene Ndiaye Frank Nielsen Jonghyun Choi Juho Lee Haavard Rue

University of Alberta, ETH, Switzerland University of Illinois NTT Corporation, Google DeepMind, Apple, France Sony Computer Seoul National KAIST, South Korea  KAUST, Saudi Arabia
Canada Urbana-Champaign, Japan us Science Laboratories, University, South
us Japan Korea

Hossein Mobahi Martin Mundt Matt Jones Nico Daheim Razvan Pascanu Rupam Mahmood Sarath Chandar Siddharth Swaroop Tom Rainforth Vincent Fortuin
Google Research, US TU Darmstadt, University of TU Darmstadt, Google DeepMind, University of Alberta,  Ecole Polytechnique  Harvard University,  University of Oxford, Helmholtz Al,
Germany Colorado, US Germany us Canada de Montréal, Canada us UK Germany

Every June in Tokyo (June 25-27, 2025)
o ; Atten i
X ¥ tte dees are from a dlyerse re§earch
T interests: Bayes, Duality, Continual/
Federated/Active learning,
RL, Experiment Design etc.
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Team Approx-Bayes

https://team-approx-bayes.qgithub.io/

-
A =

Emtiyaz Khan Thomas Méllenhoff Keigo Nishida Hugo Monzén Yohan Jung Sig-Ha.n Yang Anita .ang

Team Leader Research Scientist Special Postdoctoral Maldonado Ander. Postdoctoral Technical Staff Part-Time Student
Researcher Postdoctoral Postdoctoral Researcher The University of
RIKEN BDR Researcher Researcher Tokyo

l’\\(/

. M ki Adachi ‘ . Mi M
Bai Cong Eiki Shimizu Marco Miani Rin Intachuen Alexander Timans |asa'7ul Adrian R, Minut J?s.e.ph Agste.rwetl
Part-Time Student Part-Time Student Intern Intern Intern nem Intern Visiting Scientist
) . o . o . . University of University of Oxford Sapienza, University of  University of
Tokyo Institute of Institute of Statistical Technical University of ~ Mahidol University " . .
Amsterdam Rome Winsconsin-Madison
Technology Mathematics Denmark
Isit us! Let’ llab '
Q Visit us! Let’s collaborate!
= Also see open (post-doc)
Pierre Alquier Geoffrey Wolfer Rio Yokota Dharmesh Tailor
Visiting Scientist Visiting Scientist Visiting Scientist Remote Collaborator : t : t h b
ESSEC Business Waseda University Tokyo Institute of University of p O S I I O n S O n e We p ag e
School Technology Amsterdam
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