
Continual Deep Learning by Functional Regularisation of Memorable Past

Summary

• Intelligent systems need to adapt quickly to changing environments

• In Continual Learning, all past data can not be observed in the future

• Standard training methods lead to catastrophic forgetting of the past

• Weight-regularisation methods improve this, but are not enough

• We propose a function-regularisation method called 

Functional Regularisation of Memorable Past (FROMP)

• The key idea is to

- convert neural networks to Gaussian Processes,

- find a few crucial examples to avoid forgetting of the past (memorable 

examples),

- train a new network while regularising over memorable examples to 

avoid forgetting.

FROMP: Functional Regularisation of 
Memorable Past

Experiments

See paper for further results on Split MNIST and Permuted MNIST

Figure 2: FROMP outperforms baselines on Split CIFAR (see ‘Avg’ column). ‘Separate tasks’: 

different networks are trained on each task separately. ‘Joint tasks’: a single network is trained 

jointly on all task data (upper-bound to continual learning performance).
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Figure 1: FROMP has three steps. In Step A, we convert the previously trained network 

(orange ellipses) to a Gaussian process (top left) which is then used as a “functional prior” to 

regularise the next task. In Step B, we choose a few memorable past examples (orange 

circles) that are crucial to avoid forgetting. In Step C, we train a new network over the next 

task (black dots in the bottom row) while making sure that the predictions over memorable 

past examples remain unchanged.   

1 University of Technology Sydney, Australia; 2 University of Cambridge, UK; 3 École Polytechnique Fédérale de Lausanne, Switzerland; 4 University of Tübingen, Germany; 5 RIKEN Center for AI Project, Tokyo, Japan
† This work is conducted during an internship at RIKEN Center for AI project, Tokyo, Japan

Corresponding authors: ss2163@cam.ac.uk, emtiyaz.khan@riken.jp

Figure 3: Most memorable and least memorable datapoints on MNIST (left) and CIFAR-10 

(right). Memorable points are difficult to classify and lie on the decision boundary. Additionally, 

our method for choosing memorable points (Step B in FROMP) is computationally cheap.

(a) Most memorable       (b) Least memorable (a) Most memorable       (b) Least memorable

Weight-space vs function-space

Weight-space methods find important weights for past tasks, and keep new 

weights close to them:

where is the loss over datapoints on 

current task 𝑡, is regularisation strength,          is previous task weights, 

and is a preconditioning matrix that favours weights relevant to past 

tasks more than the rest [1, 2, 3]. 

Making current weights closer to the previous ones does not always ensure 

that the predictions on the past tasks also remain unchanged. 

Mathematical details

We start with a Bayesian formulation of continual learning (ELBO) [1]:

We replace the final weight-space regularisation term with a function-space 

regulariser. This is over memorable points only.

After some approximations (see paper), we arrive at FROMP loss function:

Network outputs pushed towards previous mean

Kernel automatically weights examples

Sum over past tasks’ memorable points

Better approach is to directly regularise neural network outputs     . For 

example, we can use 𝑙2-regularisation [4],

where       and           are vectors of function values using the current 

network and the previous task network, over all datapoints from all 

previous tasks. 

This is over all past datapoints, and therefore computationally expensive. 

Previous attempts have used inducing points [5] and “working memory” [4].


