
Continual Deep Learning by Functional Regularisation of Memorable Past

Summary

• Intelligent systems need to adapt quickly to changing environments

• In Continual Learning, all past data can not be observed in the future

• Standard training methods lead to catastrophic forgetting of the past

• Weight-regularisation methods improve this, but are not enough

• We propose a function-regularisation method called

Functional Regularisation of Memorable Past (FROMP)

• The key idea is to

- convert neural networks to Gaussian Processes,

- find a few crucial examples to avoid forgetting of the past (memorable

examples),

- train a new network while regularising over memorable examples to

avoid forgetting.

FROMP: Functional Regularisation of
Memorable Past

Experiments

See paper for further results on Split MNIST and Permuted MNIST

Figure 2: FROMP outperforms baselines on Split CIFAR (see ‘Avg’ column). ‘Separate tasks’:

different networks are trained on each task separately. ‘Joint tasks’: a single network is trained

jointly on all task data (upper-bound to continual learning performance).

References
[1] Nguyen et al., “Variational Continual Learning”, ICLR 2018.

[2] Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks”, PNAS 2017.

[3] Zenke et al., “Continual learning through synaptic intelligence”, ICML 2017.

[4] Benjamin et al., “Measuring and regularizing networks in function space”, ICLR 2019.

[5] Titsias et al., “Functional regularisation for continual learning using Gaussian processes”, ICLR 2020.

[6] Khan et al., “Approximate Inference Turns Deep Networks into Gaussian Processes”, NeurIPS 2019.

Pingbo Pan,1,*,† Siddharth Swaroop,2,* Alexander Immer,3,† Runa Eschenhagen,3,† Richard E. Turner,2 Mohammad Emtiyaz Khan5

 .65

 .

 . 5

 .

V
a
lid
a
ti
o
n
 A
c
c
u
ra
c
y

FROMP

VCL
Coreset

 C

SI

Separate
tasks

Joint
tasks

T1 T2 T3 T4 T5 T6

Cifar 1 1 classes each, Cifar 1

Step B: Find memorable
examples

weights

 eight space

Old task
weights

New task
data

Step C: t rain in weight space

with funct ional regularisat ion

Step A: Convert DNN to
GP funct ional pr ior

Old task
data

Step A: Convert DNN to
GP funct ional pr ior

Old task
data

Step B: Find memorable
examples

New task

Step C: t rain in weight space

with funct ional regularisat ion

weights

 eight space

Global
m inimum

Old task
weights

New task
data

Step C: t rain in weight space

with funct ional regularisat ion

[6]

Figure 1: FROMP has three steps. In Step A, we convert the previously trained network

(orange ellipses) to a Gaussian process (top left) which is then used as a “functional prior” to

regularise the next task. In Step B, we choose a few memorable past examples (orange

circles) that are crucial to avoid forgetting. In Step C, we train a new network over the next

task (black dots in the bottom row) while making sure that the predictions over memorable

past examples remain unchanged.

1 University of Technology Sydney, Australia; 2 University of Cambridge, UK; 3 École Polytechnique Fédérale de Lausanne, Switzerland; 4 University of Tübingen, Germany; 5 RIKEN Center for AI Project, Tokyo, Japan
† This work is conducted during an internship at RIKEN Center for AI project, Tokyo, Japan

Corresponding authors: ss2163@cam.ac.uk, emtiyaz.khan@riken.jp

Figure 3: Most memorable and least memorable datapoints on MNIST (left) and CIFAR-10

(right). Memorable points are difficult to classify and lie on the decision boundary. Additionally,

our method for choosing memorable points (Step B in FROMP) is computationally cheap.

(a) Most memorable (b) Least memorable (a) Most memorable (b) Least memorable

Weight-space vs function-space

Weight-space methods find important weights for past tasks, and keep new

weights close to them:

where is the loss over datapoints on

current task 𝑡, is regularisation strength, is previous task weights,

and is a preconditioning matrix that favours weights relevant to past

tasks more than the rest [1, 2, 3].

Making current weights closer to the previous ones does not always ensure

that the predictions on the past tasks also remain unchanged.

Mathematical details

We start with a Bayesian formulation of continual learning (ELBO) [1]:

We replace the final weight-space regularisation term with a function-space

regulariser. This is over memorable points only.

After some approximations (see paper), we arrive at FROMP loss function:

Network outputs pushed towards previous mean

Kernel automatically weights examples

Sum over past tasks’ memorable points

Better approach is to directly regularise neural network outputs . For

example, we can use 𝑙2-regularisation [4],

where and are vectors of function values using the current

network and the previous task network, over all datapoints from all

previous tasks.

This is over all past datapoints, and therefore computationally expensive.

Previous attempts have used inducing points [5] and “working memory” [4].

