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ABSTRACT
In this paper, we propose an expectation-maximization (EM)
algorithm based approach for instantaneous frequency (IF)
estimation in a Kalman smoother framework. We formulate
time-varying AR (TVAR) model as a state-space model and
derive EM algorithm for model parameter estimation. This
is used with Kalman smoother for IF estimation. We show
that our scheme EMIF shows best performance among the
other existing adaptive algorithms like RLS and LMS. Per-
formance analysis is reported for a class of FM signals.

1. INTRODUCTION

Estimation of instantaneous frequency (IF) is of primary in-
terest in many fields like wireless communications, speech,
radar and underwater acoustics etc. Time-varying autore-
gressive (TVAR) model based IF estimation was first pro-
posed in [6]. Later, Shan and Beex [1] applied basis func-
tion approach to a TVAR model. Various IF estimation al-
gorithms, including the adaptive algorithms (RLS and LMS)
were reviewed and compared by Boashash [7]. It was ob-
served that performance of these algorithms is low because
of suboptimal smoothing.

We propose an expectation-maximization (EM) algo-
rithm based IF estimation (EMIF) in a Kalman smoother
framework. We first formulate the TVAR model as a state-
space model. Then we estimate the model parameters with
EM algorithm. Once we have the model parameters, IF esti-
mates are computed with a Kalman smoother. As EMIF falls
in the category of adaptive algorithms, we compare it with
RLS and LMS algorithms. We show that EMIF performs
significantly better than the other adaptive algorithms.

2. TVAR AND STATE SPACE MODEL

Consider the time series {yt}
T
t=1, following a time-varying

AR (TVAR) model,

yt =
p

∑
k=1

at
kyt−k + vt (1)

where, {at
k}

p
k=1 are the TVAR parameters, p is the model

order and vt is observation noise, vt ∼ N (0,σ 2
v ). Define

xt ≡ [at
1at

2 . . .at
p]
′ and ht ≡ [yt−1yt−2 . . .yt−p]

′ ( ′ denotes
transpose). The TVAR parameters are modeled as a multi-
variate AR(1) process, leading to the following state-space
model,

yt = h
′

txt + vt (2)
xt = Axt−1 +wt (3)

where wt ∼ N (0,Q) is the state noise and A is p× p state
transition matrix. Eq.(2)(3) is a class of linear dynamical
system. We have,

p(yt |xt ,ht) = N (h
′

txt ,σ 2
v ) (4)

p(xt |xt−1) = N (Axt−1,Q) (5)
p(x1) = N (π1,V1) (6)

Denote the model parameters as Θ ≡ {A,σ 2
v ,Q,π1,V1}. This

kind of model has been previously studied in [2] and [5]. If
Θ is known, xt (the TVAR parameters) can be inferred us-
ing Kalman filter. The advantages of Kalman filter are well
known [2]. As the usual practice in IF estimation is to pro-
cess a block of data, we can use both the preceding and suc-
ceeding time series samples. This leads to the notion of a
Kalman smoother.

However, in practice, we do not know Θ, so usually these
parameters are set to arbitrary values or various ad-hoc /sub-
optimal procedures are used for their estimation. We use
expectation-maximization (EM) algorithm for parameter es-
timation of our state-space model. Similar approach has been
used in [3] and [4]. But our model differs from those in the
sense that the observation vector ht is not constant, but de-
pends on the lagged output {yt−1,yt−2 . . . ,yt−p}. We first de-
rive the joint log-likelihood for our model and then describe
EMIF.

2.1 Log-Likelihood

We define, Y T
1 = {y1,y2, . . . ,yT} and X T

1 =
{x1,x2, . . . ,xT}. The joint likelihood is given by,

p(X T
1 ,Y T

1 |Θ) = p(x1)
T

∏
t=2

p(xt |xt−1)
T

∏
t=1

p(yt |xt ,ht) (7)

Using eq.(4)-(6), we get,

log p(X T
1 ,Y T

1 |Θ) = −
T
2

lnσ 2
v −

1
2σ 2

v

T

∑
t=1

(yt −h
′

txt)
2

−
1
2

T

∑
t=2

(xt −Axt−1)
′
Q−1(xt −Axt−1)

−
1
2
(x1 −π1)

′V−1
1 (x1 −π1)−

1
2

ln |V1|

−
T −1

2
ln |Q|−

(p+1)T
2

ln2π (8)

Clearly, the joint log-likelihood is function of xt , which is
a hidden variable. The joint log-likelihood cannot be maxi-
mized directly. We use EM algorithm for maximization.



3. EM ALGORITHM FOR IF ESTIMATION (EMIF)

In E-step, we compute the expected log-likelihood, given ob-
servations Y T

1 and parameter estimate Θi−1 from the previ-
ous iteration,

Q(Θ,Θi−1) = E
[

ln p(X T
1 ,Y T

1 |Θ)|Y T
1 ,Θi−1] (9)

We then maximize Q(Θ,Θi−1) with respect to Θ, to obtain
the parameter estimate Θi for the next iteration. The EM
algorithm, as applied to the present problem is discussed be-
low.

3.1 E-step

Computation of Q(Θ,Θi−1) requires E[xt |Y
T

1 ], E[xtx
′
t |Y

T
1 ]

and E[xtx
′
t−1|Y

T
1 ], which we denote by x̂t ,Pt and Pt,t−1 re-

spectively. These are estimated with a Kalman smoother. De-
fine, x

τ
t ≡ E(xt |Y

τ
1 ) and V τ

t ≡ Var(xt |Y
τ

1 ). We obtain the
following Kalman filter forward recursions:

x
t−1
t = Ax

t−1
t−1 (10)

V t−1
t = AV t−1

t−1 A′ +Q (11)

Kt =
V t−1

t ht

σ 2
v +h

′

tV
t−1
t ht

(12)

x
t
t = x

t−1
t +Kt(yt −h

′

tx
t−1
t ) (13)

V t
t = (I −Kth

′

t)V
t−1
t (14)

where x
0
1 = π1 and V 0

1 = V1. To compute x̂t ≡ x
T
t and Pt ≡

V T
t +x

T
t x

T
t
′ one performs a set of backward recursions using,

Jt−1 = V t−1
t−1 A′(V t−1

t )−1 (15)

x
T
t−1 = Jt−1(x

T
t −Ax

t−1
t−1) (16)

V T
t−1 = V t−1

t−1 +Jt−1(V
T

t −V t−1
t )J′

t−1 (17)

For calculation of Pt,t−1,

Vt,t−1 = Jt−1V T
t (18)

Pt,t−1 = V T
t,t−1 +x

T
t x

T ′

t−1 (19)

The conditional likelihood is computed as,

P(yt |Y
t−1

1 ) = N (h
′

tx
t−1
t ,h

′

tV
t−1
t ht +σ 2

v ) (20)

With this equation, the progress of the learning algorithm is
monitored. This formulation is similar to [4], but there is an
important difference. As ht is varying with time, the esti-
mate of x̂t ,Pt ,Pt,t−1 will also vary with time, unlike the usual
formulation of Kalman filters (see [8]), where Pt and Pt,t−1
are independent of data.

3.2 M-step

Maximizing Q(Θ,Θi−1) with respect to Θ, we get the fol-
lowing estimates in the ith iteration:

Âi =
( T

∑
t=2

Pt,t−1

)( T

∑
t=2

Pt−1

)−1
(21)

σ̂ 2
v

i
=

1
T

T

∑
t=1

(
y2

t −2h
′

t x̂tyt +h
′

tPtht

)
(22)

Q̂i =
1

T −1

( T

∑
t=2

Pt − Âi
T

∑
t=2

Pt−1,t

)
(23)

π̂ i
1 = x̂1 (24)

V̂ i
1 = P1 − x̂1x̂

′
1 (25)

3.3 IF Estimation

Once we have the estimates of Θ, TVAR parameters i.e. xt
can be inferred from Kalman smoother eq.(10)-(17). Then,
we estimate the time-varying frequency spectrum as,

P̂t( f ) =
σ̂ 2

v

|1−∑p
k=1 ât

ke−i2πk f/ f s|2
(26)

The IF estimate is computed as the peak of the spectrum
P̂t( f ), i.e.,

f̂t = argmax
f

P̂t( f ) (27)

4. PRACTICAL ISSUES

We observed that initializing the algorithm properly leads to
better estimates, and speedens convergence. For initializa-
tion, we divide the dataset into overlapping windows, and
compute the maximum likelihood estimates of xt for each
window. By setting A to identity matrix, and assuming state
equation (3), we compute maximum likelihood estimates of
{Q,x1,V1}. With these estimates of parameters, we again
run the dataset through Kalman smoother to get the estimates
of xt , from which the maximum likelihood estimates of all
the parameters are obtained. These are used to initialize the
EM algorithm.

After initialization, E and M steps are iterated. The
progress of the algorithm is monitored with the likelihood
given by eq.(20), and the algorithm is said to have converged,
if successive iterations do not improve the likelihood score
by more than 0.01%.

To generalize the formulation for multiple observations,
we need to take care of the fact that x̂t ,Pt ,Pt,t−1 are time
dependent. For the sake of simplicity, we assume all the ob-
servations to be i.i.d., which yields,

Q
(
Θ,Θi−1)=

N

∑
k=1

E
[(

ln p(X k,Y k|Θ)
)
|Y k,Θi−1] (28)

where X k and Y k are variables associated with the kth ob-
servation. Clearly, the estimates of x̂t ,Pt ,Pt,t−1 are the sum
of the estimates of each observation. Then, Q

(
Θ,Θi−1

)
is

maximized with respect to Θ.
In this paper, we set model order at p = 4. Effect of

model order on the performance and computational complex-
ity of the algorithm will be studied separately.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

Time (Seconds)

F
re

q
u
e
n
cy

 (
H

z) LMS
RLS
Truw IF
EMIF

F
re

q
u
e
n
cy

 (
H

z)

(a) 

(b) 

Figure 1: (a) Time-varying spectral estimate of a linear FM
signal, estimated with EMIF (b) comparison of EMIF, RLS
and LMS, for IF estimation of linear FM (one realization at
10.98 dB).
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Figure 2: f̂t(solid line), f̂t ±σ f (dashed line) for IF estimates
of 100 realizations of linear FM signal, with SNR=17.9 dB,
estimated with EMIF, RLS and LMS

5. RESULTS

5.1 Experiment I

First, we compare the performance, for linear IF estimate.
Consider,

yt = 5sin(2π ftt)+ut (29)

where ft is the instantaneous frequency given by ft = 10t,
and ut is a white Gaussian noise with variance σ 2

u . We gen-
erated one realization with σ 2

u = 1 (SNR=10.98 dB), of 2 sec-
onds duration, and sampled at 128 Hz. Time-varying spec-
tral estimate is shown in Fig.1(a). IF estimates were obtained
with EMIF, RLS and LMS. Forgetting factor λ , for RLS and
step size µ for LMS, were set to 0.95 and 0.04, respectively.
One can clearly see in Fig.1(b), that the steady state error,
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Figure 3: (a) Time-varying spectral estimate of a sinusoidal
FM signal, estimated with EMIF (b) Comparison of EMIF,
RLS and LMS, for IF estimation of sinusoidal FM (one real-
ization at 10.98 dB).
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Figure 4: f̂t(solid line), f̂t ±σ f (dashed line) for IF estimates
of 100 realizations of sinusoidal FM signal, with SNR=17.9
dB, estimated with EMIF, RLS and LMS

as well as settling time, are very less in EMIF, compared to
RLS and LMS. Hence, we see that EMIF gives the best over-
all performance.

To analyze the average performance over realizations, we
generated 100 realizations with σ 2

u = 0.2. λ and µ were set
to 0.95 and 0.01, respectively. Fig.2 shows f̂t and f̂t ±σ f ,
where f̂t and σ f denote mean and standard deviation, respec-
tively, of the IF estimates. Here again, EMIF is observed to
have very less steady state error and settling time, compared
to RLS and LMS. Also, EMIF has the closest mean to the
true IF, and least variance of all. Thus, EMIF has the best
average performance too.



5.2 Experiment II

Now we compare for non-linear FM signal (sinusoidal) given
as,

yt = 5sin(2π f (t +0.05sin(2π fmodt)))+ut . (30)

where ut ∼ N (0,σ 2
u ). The instantaneous frequency, under-

lying the signal, is given by,

f i(t) = f +0.1π f fmod cos(2π fmodt) (31)

We set f = 19.2 Hz and fmod = 1.28 Hz. We pro-
duced one realization of 2 seconds duration with σ 2

u = 1
(SNR=10.98 dB), and sampled at 128 Hz. Time-varying
spectral estimate with EMIF is shown in Fig.3(a). λ and
µ were set to 0.85 and 0.01 respectively. IF estimates are
shown in Fig.3(b). We see that EMIF tracks the true IF better
than RLS and LMS.

To compare the average performance, we compute IF es-
timates of 100 realizations, with σ 2

e = 1.25 (SNR=10dB). λ
and µ were set to 0.85 and 0.01 respectively. Fig.4 shows f̂t
and f̂t ±σ f . Clearly, EMIF has the closest mean and least
spread of all.

5.3 Experiment III

To complete the analysis, we compare the error performance
at different noise levels, for both linear and sinusoidal FM
signal. We vary σ 2

u , and estimate the IF for 100 realizations.
The mean square error (MSE) was calculated as,

MSE =
T

∑
t= T

2

N

∑
k=1

( f̂ k
t − ft)

2 (32)

where, f̂ k
t is the IF estimate from kth realization, ft is true

IF, N is the total number of realizations, T is observation
length. Note that rather than computing MSE at a point, we
averaged MSE for all the points, from middle of the block to
end. This is because of our interest in tracking the IF and not
in estimating it at a point. Also, first half of the estimate is
not used for MSE computation, because the RLS and LMS
algorithms have large initial error. Including them will bias
the error measure and hence, they were not considered. Only
[T/2,T ] was used.

The average error against SNR for linear FM and sinu-
soidal FM, is shown in Fig.5 (a) and (b). One can clearly see
that error is least for EMIF. At higher SNR too, EMIF per-
forms satisfactorily, whereas the performance of LMS and
RLS is very bad.

6. CONCLUSION

In this paper, we proposed a new algorithm EMIF for instan-
taneous frequency estimation, using EM algorithm approach
in a Kalman smoother framework. We compared EMIF with
RLS and LMS algorithms for IF estimation. EMIF was
shown to have best IF tracking. We compared MSE at dif-
ferent noise levels, and EMIF was shown to have least error
for all. Even at higher SNR, where the performance of LMS
and RLS was very bad, EMIF performed reasonably well.
Hence, EMIF is a significant improvement over other avail-
able adaptive algorithms.
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Figure 5: MSE vs. SNR for (a) linear FM signal (b) sinu-
soidal FM signal
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