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1. Slides at https://emtiyaz.github.io/papers/Dec14 2021 NeurlPS BDL.pdf
2. Presenting work done at RIKEN, current affiliation at University of Amsterdam, Netherland



https://emtiyaz.github.io/papers/Dec14_2021_NeurIPS_BDL.pdf

Al that learns as quickly as
humans and animals

Quickly adapt to new situations in the future
by robustly preserving & using past knowledge



Fail because too quick to adapt

TayTweets: Microsoft Al bot manipulated
into being extreme racist upon release
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Fail because too slow to adapt

https://www.youtube.com/watch?v=TxobtWAFh80 4



https://www.youtube.com/watch?v=TxobtWAFh8o

Adaptive & Robust Learning with Bayes

“Good” algorithms are inherently Bayesian

Bayesian learning rule [1]
— Presented by Emti

Robustness: Memorable experiences [2]
— presented by Dharmesh

Adaptation: Knowledge-Adaptation Priors [3,4,5]
— presented by Siddharth

Take away: A new perspective of Bayes, essential
for adaptive and robust deep learning

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Tailor, Chang, Swaroop, Tangkaratt, Solin, Khan. Memorable experiences of ML models (in preparation)
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020

5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)



https://arxiv.org/abs/2106.08769

See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

A good algorithm must revise its
*past™ beliefs by using useful
*future™ information

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



A Bayesian Origin
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Bayesian Learning Rule [1,2]
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1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



Bayesian learning rule: A < (1 — p)A — pV ,E,[¢(0)]

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

The BLR variants
[1,2,3] led to the
winning solution for
the NeurlPS 2021
challenge for
“approximate
inference in BDL”
(Watch Thomas
Moellenhoff’s talk)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).



Robustness

Good algorithms can tell apart
relevant vs irrelevant information



Perturbation, Sensitivity, and Duality
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See Section 5.4 in Khan and Rue, 2021 for local parameterization
See Section 3 in ADAM et al. 2021 for dual parameterization

BLR Solutions & Thelr Duality
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Global and local natural parameter

Local parameters are Lagrange Multipliers, measuring the
sensitivity of BLR solutions to local perturbation [1]. They
can be used to tell apart relevant vs irrelevant data.

1. ADAM, Chang, Khan, Solin, Dual parameterization of SVGP, NeurlPS, 2021
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Memorable Experiences
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Memorable Experiences
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1. Schneider et al. DeepOBS: A Deep Learning Optimizer Benchmark Suite”. ICLR 2018



Advantages of Memorable Experiences

* Through posterior approximations, the criteria to
categorize examples naturally emerges

— Generalizes existing concepts such as support
vectors, influence functions, inducing inputs etc

* Local parameters are available for free and applies
to almost “any” ML problem

— Supervised, unsupervised, RL
— Discrete/continuation loss and model parameters
* The sensitivity of posterior leads to “Bayes Duality”

1. Tailor, Chang, Swaroop, Tangkaratt, Solin, Khan. Memorable experiences of ML models (in preparation)



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans
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Adaptation

Continual Learning without
forgetting the past (by using
memorable examples)

16



Continual Learning

Avoid forgetting by using memorable examples [1,2]
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1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 17



Functional Regularization of
Memorable Past (FROMP) [3]

Previous approaches used weight-regularization [1]

Qnew(e) — Hélél Eq(@) wnew(e)] — H(Q) - Eq(@) [log QOld(e)]
! New data Weight-regularizer
We replace it by a functional using old posterior

regularizer using a “Gaussian

. E(je (f) UOg q%ld (f)]
Process view” of DNNSs [2]
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Kernels weighs examples /
according to their memorability
1. Nguyen et al., Variational Continual Learning, ICLR, 2018

2. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
3. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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See Section 3 and 4, and App Ain [2]

K-Priors and Bayes-Duality

* Dual parameterization of DNNs
— expressed as Gaussian Process [1]
— Found using the Bayesian learning rule

* The functional regularizer can provably
reconstruct the gradient of the past faithfully [2]

— Knowledge-Adaptation priors (K-priors)

— There is a strong evidence that “good”
adaptive algorithms must use K-priors

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)



https://arxiv.org/abs/2106.08769

Summary

* A new perspective of Bayes, essential for
adaptive and robust deep learning

* Approximate posteriors are crucial
— Bayesian learning rule [1]
— Robustness: Memorable experiences [2]
— Adaptation: K-Priors [3,4,5]

* Bayes-duality for Al that learns like humans

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Tailor, Chang, Swaroop, Tangkaratt, Solin, Khan. Memorable experiences of ML models (in preparation)

3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020

5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769) 20



https://arxiv.org/abs/2106.08769
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