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How to make Al that can
adapt quickly?



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

What are the common principles
behind popular algorithms?

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



Principles of “good” algorithms?

* Information Geometry of Bayes
— To unify/generalize/improve learning-algorithms
— Optimize for “posterior approximations”

« Bayesian Learning rule (BLR)

— Derive many algorithms from optimization, deep
learning, and Bayesian inference

* Natural Gradients are Everywhere!

— Should also be there in Probabilistic programming and
TPM etc., and | hope that this talks helps to build this
bridge between TPM community and Approx Bayes.

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



Bayesian Learning Rule

New information as natural
gradients



Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization vew) Mixture of Gaussians —_— 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (vew) — Remove delta method from OGN 4.4
BayesBiNN (ew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate p; =1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pr = 1 for all nodes 5.3
Non-Conjugate VMP — — 5.3
Non-Conjugate VI (New) Mixture of Exp-family None 5.4




(Tractable) Bayesian Learning and
Conjugate Computations

Multiplication of distribution = addition of (natural) params

Bayes rule: posterior o lik X prior

e postT(e) X 6>\1—1rkT(9) X e pI‘lOI‘T(e)

)\post — )\lik =+ )\prior

No integrals needed! Tractability is often synonymous to
“conjugate computations” [1] and this idea can be
generalized through (natural) gradients.

1. Khan and Lin, Conjugate computation variational inference, AISTATS, 2017.



Geometry of Exponential Family

We will exploit the geometry of “minimal” exp-family

Natural Sufficient Expectation
parameters Statistics parameters
b }
a(0) o exp [N T(0)] 1= B, [T(0)]

N(O|m,S™) o exp [—%(9 —m)'S(h — m)]
X exp [(Sm)TQ + Tr (—%(%T)]
| Gaussian distribution q(0) == N(0)m,S1)
Natural parameters A= {Sm,—-5/2}
_ Expectation parameters 1 := {Eq(6),E,(06")}

J

1. Wainwright and Jordan, Graphical Models, Exp Fams, and Variational Inference Graphical models 2008
2. Malago et al., Towards the Geometry of Estimation of Distribution Algos based on Exp-Fam, FOGA, 2011 11



Information Geometry of Bayes

Bayes’ rule is 1-step of natural-gradient in the A-space or
equivalently a mirror-descent in the (dual) u-space.

)\post — )\lik =+ )\prior
Expected log-lik and log-prior are linear in j [1]
E,[log-1ik] = A Bg[T(0)] = At
Gradient wrt u is simply the natural parameter
VMEC] [log—lik] — )\lik
So Bayes’ rule can be written as (for an arbitrary q)
Apost — V,E,[log-lik 4 log-prior|

As an analogy, think of least-square = 1-step of Newton
1. Khan, Variational-Bayes Made Easy, AABI 2023.



Bayes’ rule = Information-Geometric
Optimization

Theorem 1. Bayes’ rule in conjugate models can be realized by one step of the
following NGD with learning rate pg = 1 to mazimize the Bayes objective L(q),

- 0
A Do+ T Llan), uhere £(g) =, [log P05 | @)

and the natural gradients are defined as Va = F(A\)"1Vx with F(A\) as the Fisher

information matriz of gx(0). 3.5 The new learning rule

SUCh resu ItS can be We are now ready to state our final rule. The Lie-Group
. . BLR uses the following update
written in more general

forms (beyond Here, (d€ (qg))ii denotes the direction of fastest ascent at
conjugate models). We go»and Y € T,G is such that its image h{, € T, Q under

dp o dL, matches the direction of fastest ascent. Given

g < gexp(—aY) where hy = (dc‘,’(qg))ﬁ €T, Q. (10)

need to Choose the such Y, the update naturally stay within the manifold due
. to the closure property of the group, where the exponential
CIaSS Of q Wlth an map folds the tangent vector back on the manifold. We
. will now explain the operator §, also known as the musical-

d p p o p Il ate g eom et ry) 1somorphism sharp, and its computation.

1. Kiral, Mollenhoff, Khan, The Lie-group Bayesian Learning Rule, AISTATS, 2023

13



Bayes as Optimization

Bayes rule: posterior o lik X prior
Bayes as min | (log-lik] + KL(g]|prio
optimization [1], ~ €< q[log-1ik] + KL (g]|prior)

aka variational

inference: . .

log-lik -T log-prior
Generalized min E g [£(0)] — H(q)
Approx Bayes: q GQT Entropy

Posterior approximation (expo-family)

1. Zellner, Optimal information processing and Bayes’s theorem, The American Statistician, 1988.

14



The Bayesian Learning Rule

in £(60 vs min K v(0) — H(g
T (©) qeQ q(Q)[ (©)] EntSop)y

I
Posterior approximation (expo-family)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of q

A d— oV, 0) - H(g) )

A (1= p)X—pV, Eg[(0))
T |
Old belief  New information = natural gradients
Exploiting posterior’s information geometry to derive existing algorithms
as special instances by approximating g and natural gradients.

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference....” Alstats (2017).




Warning!

* This natural gradient is different from the one
what we (often) encounter in machine learning
for Maximum-Likelihood

— In MLE, the loss is the negative log
probabillity distribution

min — log g(0) = F(6)~' Vlog q(6)

— Here,e loss and distribution are two different
entities, even possible unrelated

min E [£(0)] — #(q) = F(A)~' V,E,[£(0)]
q



Gradient Descent from
Bayesian Learning Rule

(Euclidean) gradients as natural
gradients

17



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

18



See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from BLR

GD:

BLR:

“Global” to “local” )
(the delta method)

B [(6)] ~ L(m)

0« 60— pVel(0)

m < m — pV,f(m)

m < m — pV;,Eq[€(0)]

A= A—pV, (Eq[4(9)] — H(q))

Derived by choosing Gaussian with fixed covariance

_Entropy

" Gaussian distribution () := N(m, 1)
Natural parameters
Expectation parameters i :=E,[0] =m

Ai=m

H(q) = log(2m)/2

J

19



Bayesian learning rule:

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP “— — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4

Put the expectation
(Bayes) back in and
use the Bayesian
averaging.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).

3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).

20



Practical DL with Bayes

RMSprop BLR variant called VOGN
g+ V(6) g < VL(0), where 0 ~ N (m,c?)
s ¢ (1 —p)s+ pg* s ¢ (1= p)s+p(3ig;)
0 0—al/s+06) g m < m — a(s + ) Vel (6)
o (s+v) 1

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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https://github.com/team-approx-bayes/dl-with-bayes

Uncertainty of Deep Nets

VOGN: A modification of Adam with similar
performance on ImageNet, but better uncertainty

lteration 1
70F
10
& 60}
o
] ©
o~ 8 50'
"5’ (@)
2 . ©
: § 40
35 —— SGD
-5 ] — L
;{ —— Adam S 30 Adam
& —— VOGN — VOGN
~ 5 z 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Méllenhoffl, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl!, Mohammad Emtiyaz Khan1

1 Approximate Bayesian Inference Team 2 Computer Vision Group
RIKEN Center for Al Project, Tokyo, Japan Technical University of Munich, Germany

Dec 14th, 2021 — NeurlPS Workshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)24



SAM as an Optimal relaxation of Bayes

sAM:  sup £(6 + ¢)

lel<p

A

Our work:
Fenchel
Biconjugate

Bayes:

/ [EGNJV(O,02)[K(9 + 6)]

1. Foret et al. Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR, 2021
2. Moellenhoff and Khan, SAM as an Optimal Relaxation of Bayes, Under review, 2022
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See Section 1.2 in Khan and Rue, 2021

Our use of natural-gradients here is not a matter of choice. In fact, natural-gradients are inherently
present in all solutions of the Bayesian objective in Eq. 2| For example, a solution of or equivalently
a fixed point of satisfies the following,

VuE,.[6(8)] = V,H(q.), which implies VAE,, [—£(8)] = A., (5)

for candidates with constant base-measure. This is obtained by setting the gradient of Eq. 2|to 0, then
noting that V,H(q) = —A (App. B), and then interchanging V,, by V (because of Eq. 4). In other
words, natural parameter of the best ¢.(8) is equal to the natural gradient of the expected negative-loss.
The importance of natural-gradients is entirely missed in the Bayesian/variational inference literature,
including textbooks, reviews, tutorials on this topic [Bishop, 2006, Murphy, 2012, Blei et al., 2017,
Zhang et al., 2018a] where natural-gradients are often put in a special category.

We will show that natural gradients retrieve essential higher-order information about the loss land-
scape which are then assigned to appropriate natural parameters usingEq. 5| The information-matching
is due to the presence of the entropy term there, which is an important quantity for the optimality
of Bayes in general [Jaynes| 1982, Zellner, 1988, Littlestone and Warmuth, 1994, Vovk, 1990], and
which is generally absent in non-Bayesian formulations (Eq. 1). The entropy term in general leads to
exponential-weighting in Bayes’ rule. In our context, it gives rise to natural-gradients and, as we will
soon see, automatically determines the complexity of the derived algorithm through the complexity of
the class of distributions Q, yielding a principled way to develop new algorithms.

Overall, our work demonstrates the importance of natural-gradients and information geometry for
algorithm design in ML. This is similar in spirit to Information Geometric Optimization [Ollivier et al.,
2017), which focuses on the optimization of black-box, deterministic functions. In contrast, we derive
generic learning algorithms by using the same Bayesian principles. The BLR we use is a generalization
of the method proposed in Khan and Lin [2017], Khan and Nielsen [2018)] specifically for approximate
Bayesian inference. Here, we establish it as a general learning rule to derive many old and new learning
algorithms, which include both Bayesian and non-Bayesian ones, way beyond its original proposal. We
do not claim that these successful algorithms work well because they are derived from the BLR. Rather,
we use the BLR to simply unravels the inherent Bayesian nature of these “good” algorithms. In this
sense, the BLR can be seen as a variant of Bayes’ rule, useful for generic algorithm design.

26



Principles of “good” algorithms?

* Information Geometry of Bayes

— To unify/generalize/improve learning-
algorithms

— Optimize for “posterior approximations”
* Bayesian Learning rule (BLR)

— Derive many algorithms from optimization,
deep learning, and Bayesian inference

* Natural Gradients are Everywhere!

Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
Lin et al., Tractable structured natural gradient descent using local parameterizations, ICML 2021



b « 1:40

Human Learning at
the age of 6 months.

by Mohammad Emtiyaz Khan

Deep Learning with
Bayes i an Pri nCi pl es Deep Learning with Bayesian Principles

NeurlPS 2019

Tutorial

#NeurlPS 2019

rA ° Views 151 807 Presentations 263 Followers 200

FROM SYSTEM 1 DEEP
LEARNING TO SYSTEM 2 DEEP
LEARNING

From System 1 Deep Learning to System 2
Deep Learning

by Yoshua Bengio
17,953 views - Dec 11,2019

DEEP LEARNING WITH
BAYESIAN PRINCIPLES

by Mohammad Emtiyaz Khan

DeC 9 201 9 X 8,084 views - Dec 9, 2019

KO

NEURIPS WORKSHOP ON
MACHINE LEARNING FOR
CREATIVITY AND DESIGN 3.0
2

NeurlPS Workshop on Machine Learning
for Creativity and Design...

by Aaron Hertzmann, Adam Roberts,

9,654 views - Dec 14, 2019

EFFICIENT PROCESSING OF
DEEP NEURAL NETWORK: FROM
ALGORITHMS TO HARDWARE
ARCHITECTURES

Efficient Processing of Deep Neural
Network: from Algorithms to...

by Vivienne Sze
7,163 views + Dec 9, 2019




Approximate Bayesian Inference Team

https://team-approx-bayes.github.io/

Emtiyaz Khan
Team Leader

Thomas Méllenhoff

Hugo Monzén

Research Scientist

Keigo Nishida
Postdoc
RIKEN BDR

Geoffrey Wolfer
Postdoc

Gian Maria Marconi
Postdoc

Wu Lin

PhD Student
University of British
Columbia

Maldonado
Postdoc

Negar Safinianaini

Postdoc

Peter Nickl
Research Assistant

Happy Buzaaba
Postdoc

Lu Xu
Postdoc

Dharmesh Tailor
Remote Collaborator
University of

Amsterdam

"

Ang Mingliang
Remote Collaborator
National University of
Singapore

£

Erik Daxberger
Remote Collaborator
University of
Cambridge

29


https://team-approx-bayes.github.io/

