



#### Lifelong Learning with Bayes

#### Emtiyaz Khan Gian Maria Marconi & Lu Xu

RIKEN Center for AI Project, Tokyo https://team-approx-bayes.github.io/

Summary of recent research at <u>https://emtiyaz.github.io/papers/symposium\_2022.pdf</u> Slides available at <u>https://emtiyaz.github.io/</u>

# How to make AI that can adapt quickly?

Humans and animals are extremely good at this

## Human Learning at the age of 6 months.



## Converged at the age of 12 months



Transfer skills at the age of 14 months



#### Failure of AI in "dynamic" setting

Robots need quick adaptation to be deployed (for example, at homes for elderly care)



https://www.youtube.com/watch?v=TxobtWAFh8o The video is from 2017

#### **Adaptation in Machine Learning**

- Machines are bad in quickly adapting to changes
  - Even small changes require a complete retraining-from-scratch
  - This is expensive, time consuming [1,2]
  - Example: Tesla AI Data-Engine for "self-driving cars" takes 70000 GPU hrs [3]
- Difficult to apply to domains with "dynamic" setting
  - Robotics, medicine, user interaction, epidemiology, climate science, etc.

<sup>1.</sup> Diethe et al. Continual learning in practice, arXiv, 2019.

<sup>2.</sup> Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.

<sup>3. &</sup>lt;u>https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s</u>

#### Summary

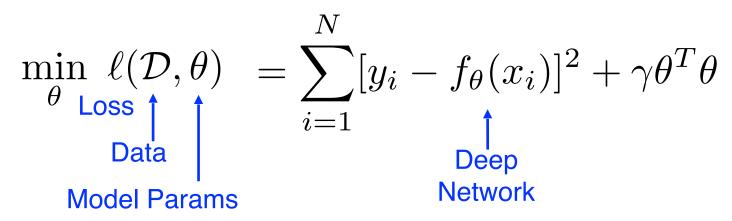
- Why Bayes?
- Lifelong learning with Bayes
  - Use simple estimates of uncertainty
  - Use memory, sensitivity etc.
- A (simple) method to get good uncertainty out of Deep-Learning optimizers

## Why Bayes?

**Because uncertainty!** 

#### **Principle of Trial-and-Error**

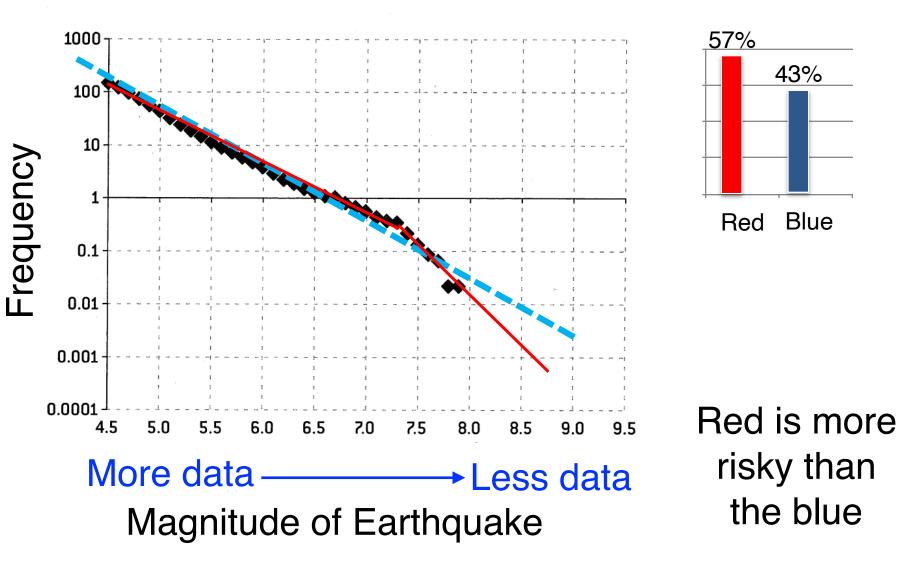
Frequentist: Empirical Risk Minimization (ERM) or Maximum Likelihood Principle, etc.



Deep Learning Algorithms:  $\theta \leftarrow \theta - \rho H_{\theta}^{-1} \nabla_{\theta} \ell(\theta)$ 

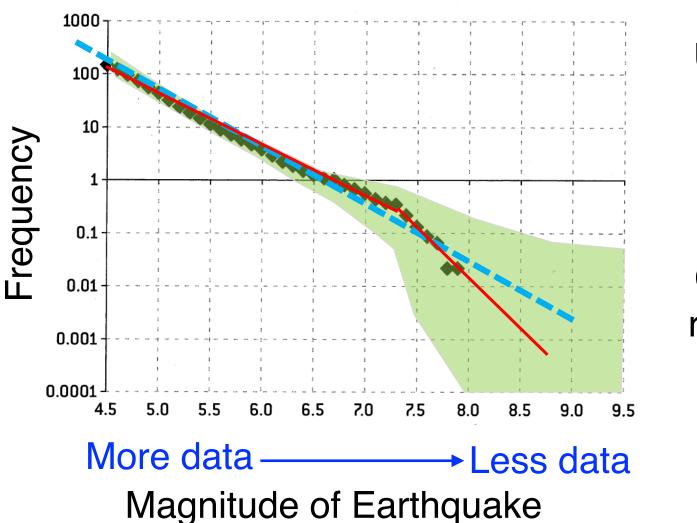
Scales well to large data and complex model, and very good performance in practice.

#### **Example: Which is a Better Fit?**



Real data from Tohoku (Japan). Example taken from Nate Silver's book "The signal and noise" 11

#### **Example: Which is a Better Fit?**



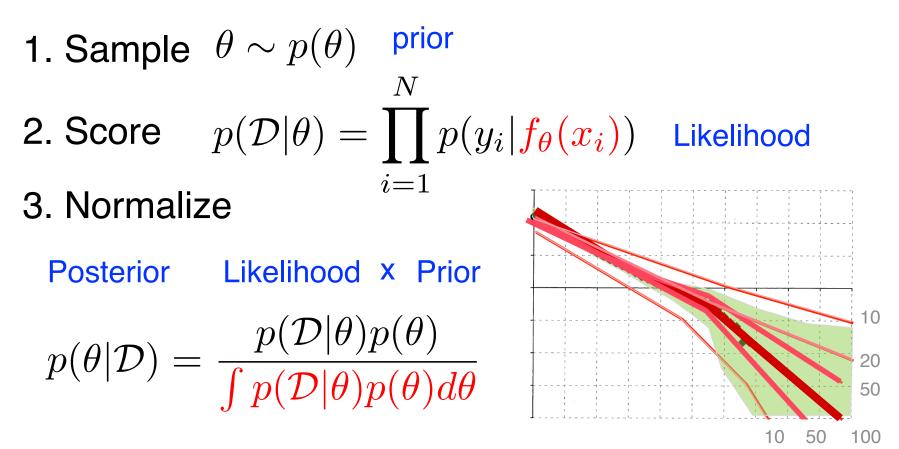
Uncertainty: "What the model does not know"

Choose less risky options!

Avoid data bias with uncertainty!

Real data from Tohoku (Japan). Example taken from Nate Silver's book "The signal and noise" 12

## **Bayesian Principles**



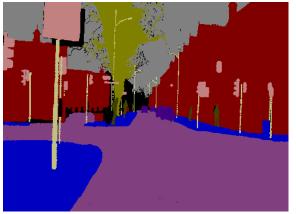
A global method: Integrates over all models Does not scale to large problem

#### Uncertainty Estimates for Image Segmentation

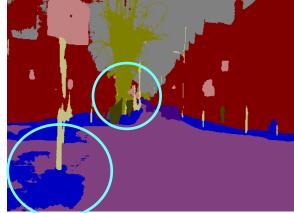
Image



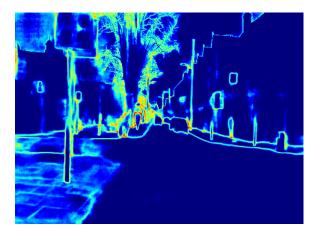
True Segments

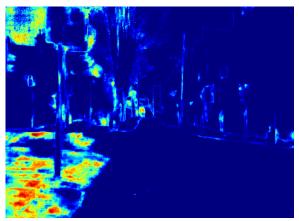


Prediction

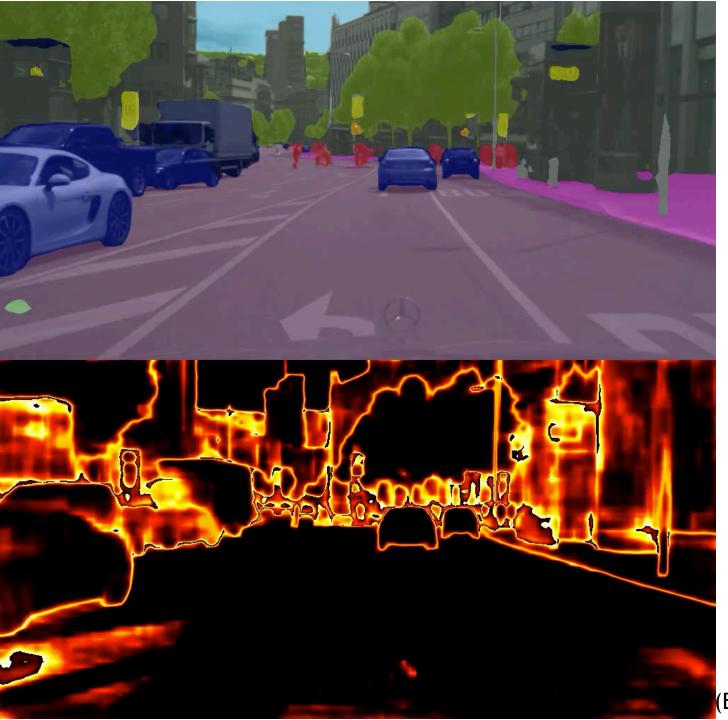


Uncertainty





Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics." *CVPR*. 2018.



#### Image Segmentation

Uncertainty (entropy of class probs)

(By Roman Bachmann)<sup>15</sup>

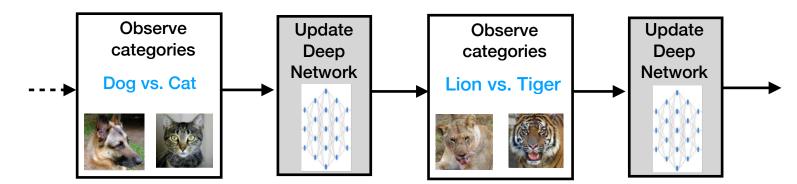
# What about lifelong continual learning?

## Lifelong Continual Learning

Standard Deep Learning



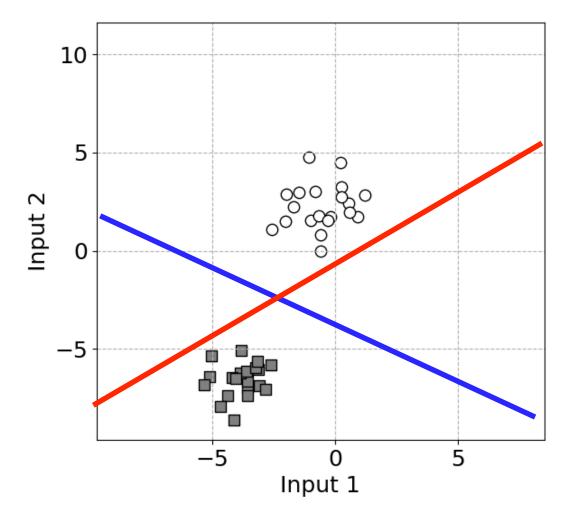
Continual Learning: past classes never revisited



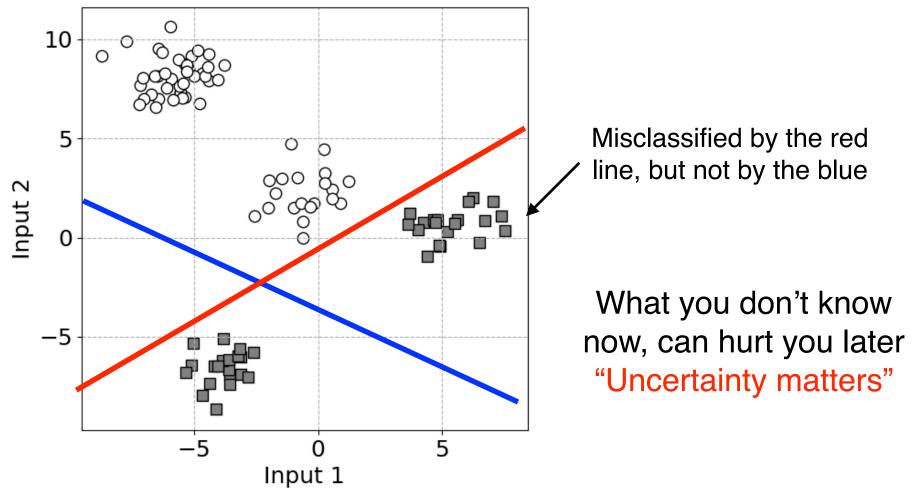
Standard training leads to catastrophic forgetting.

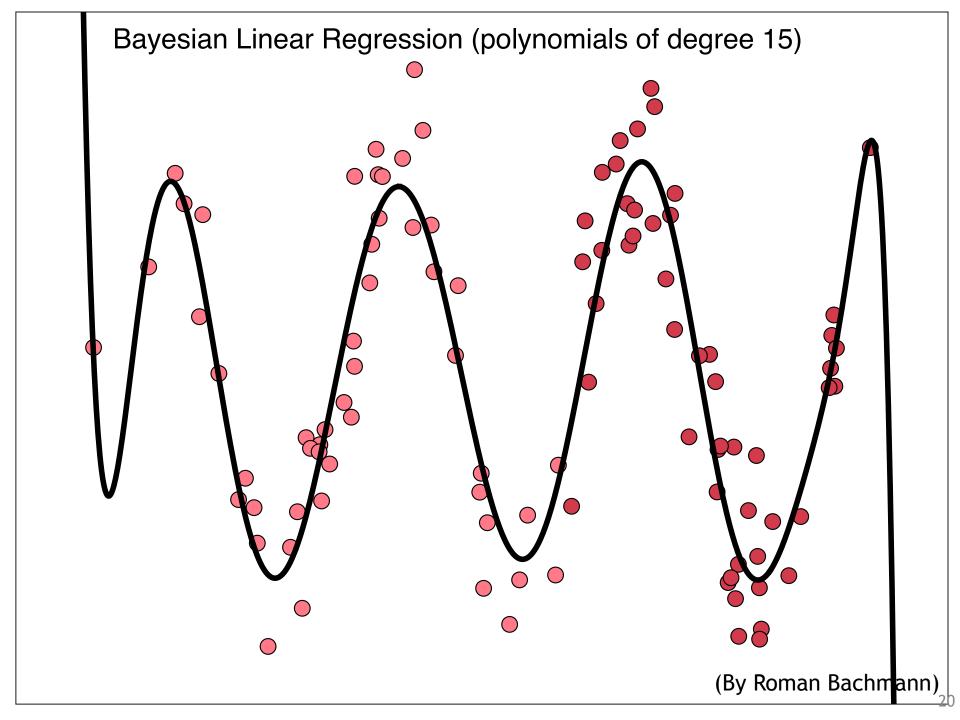
Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." *Proceedings of the national academy of sciences* 114.13 (2017): 3521-3526.

### Which is a good classifier?

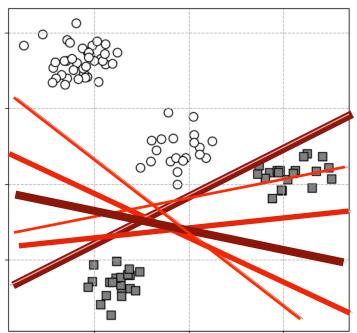


## Which is a good classifier?





### **Bayesian Principles**



(1) Keep your options open  $p(\theta | \mathcal{D}_1) = \frac{p(\mathcal{D}_1 | \theta) p(\theta)}{\int p(\mathcal{D}_1 | \theta) p(\theta) d\theta}$ 

(2) Revise with new evidence

$$p(\theta|\mathcal{D}_2, \mathcal{D}_1) = \frac{p(\mathcal{D}_2|\theta)p(\theta|\mathcal{D}_1)}{\int p(\mathcal{D}_2|\theta)p(\theta|\mathcal{D}_1)d\theta}$$

Similar ideas in sequential/online decision-making (uncertainty/randomization). Computation is infeasible.

## Weight regularizers

Computing posteriors exactly is infeasible, but we could approximate them [1]. One option is to use weight regularizer known as the Elastic-Weight Consolidation (EWC)

$$\log p(\theta | \mathcal{D}_{old}) \approx -\frac{1}{2} (\theta - \theta_{old})^{\top} S_{old} (\theta - \theta_{old})$$

$$\uparrow$$
Weight uncertainty
(Hessian/Fisher etc.)

## Gianma and Lu will show later how to compute S\_old within a deep-learning optimizer.

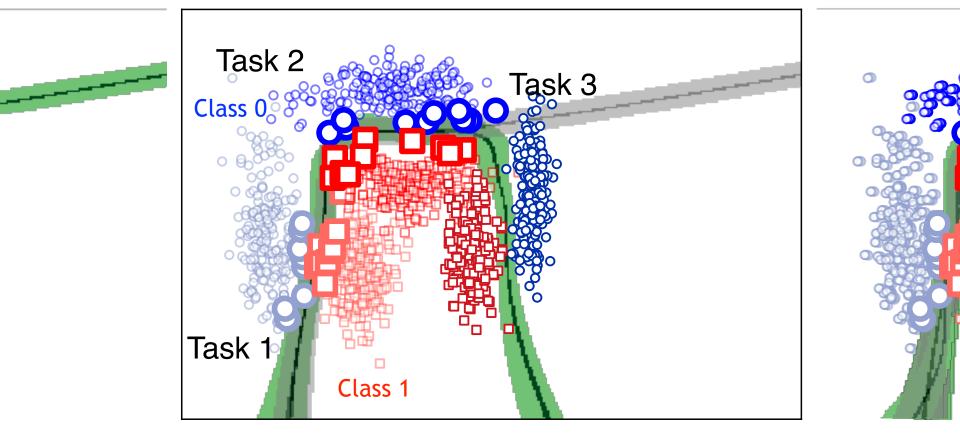
1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017

#### **Uncertainty = Memory = Sensitivity**

An out of the box idea!

## **Memory-based Methods**

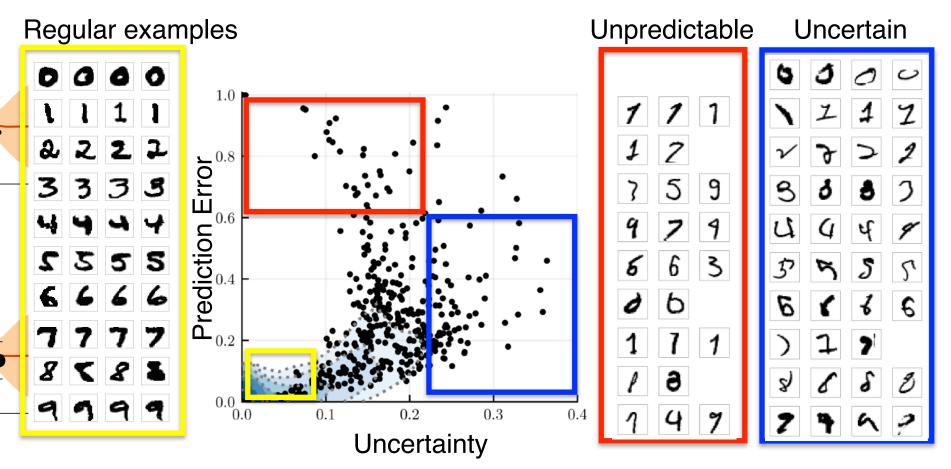
#### Avoid forgetting by using "memorable examples" [1,2]



Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurIPS, 2019
 Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

## Memory (as sensitivity) Maps

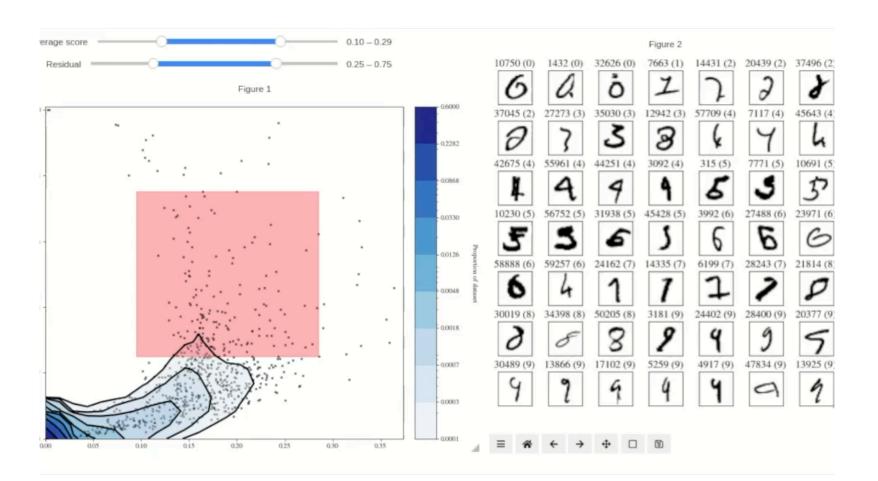
Highly sensitive examples: crucial for lifelong learning



1. Tailor, Chang, Swaroop, Nalisnick, Solin, Khan, Memory maps to understand models (under review)

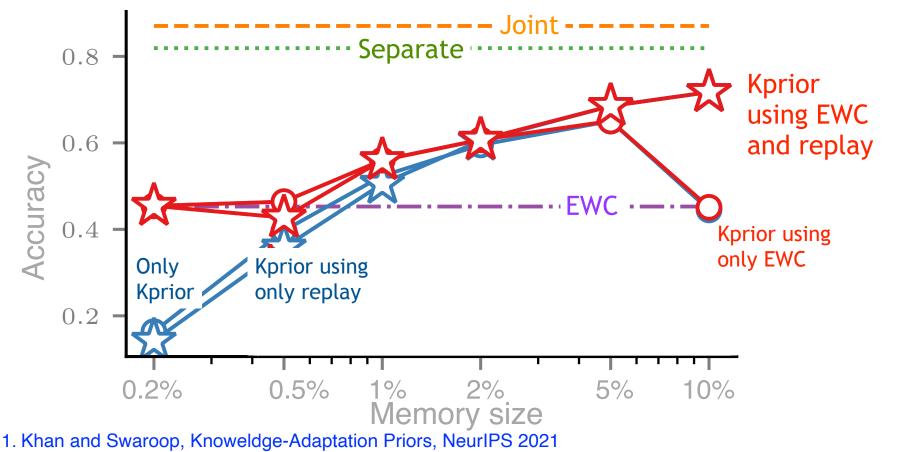
#### **A Tool for Data-Scientists**

Understand the memory of a model.



### **Continual Learning on ImageNet**

K-prior allows us to optimally combine model and data to get good accuracy with little memory.



2. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past (under review).

# How to compute uncertainty for deep learning?

Algorithms as special cases of the Bayesian Learning Rule [1], which allows us to add uncertainty for free

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021



Human Learning at the age of 6 months.

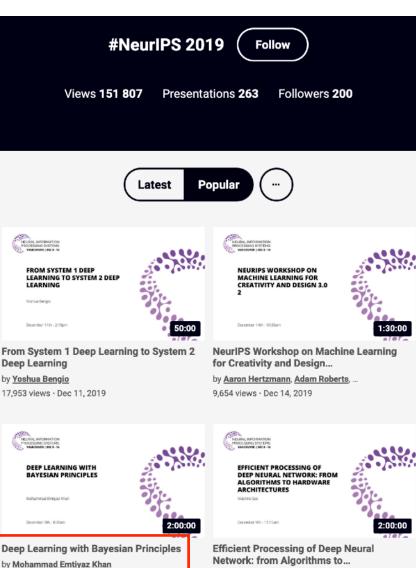
NEURAL INFORMATION PROCESSING SYSTEMS

#### Deep Learning with Bayesian Principles

3

by Mohammad Emtiyaz Khan · Dec 9, 2019

#### NeurIPS 2019 Tutorial

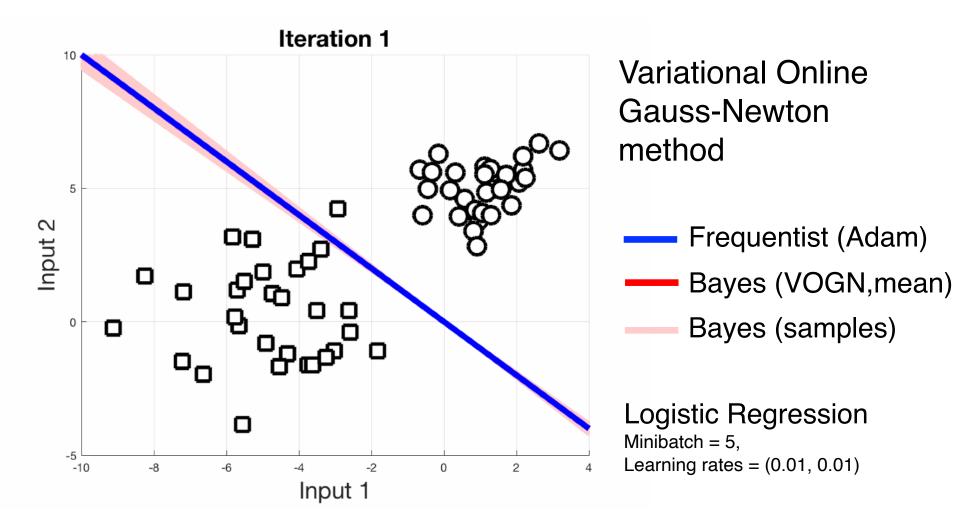


by <u>Vivienne Sze</u> 7,163 views · Dec 9, 2019

8,084 views - Dec 9, 2019

29

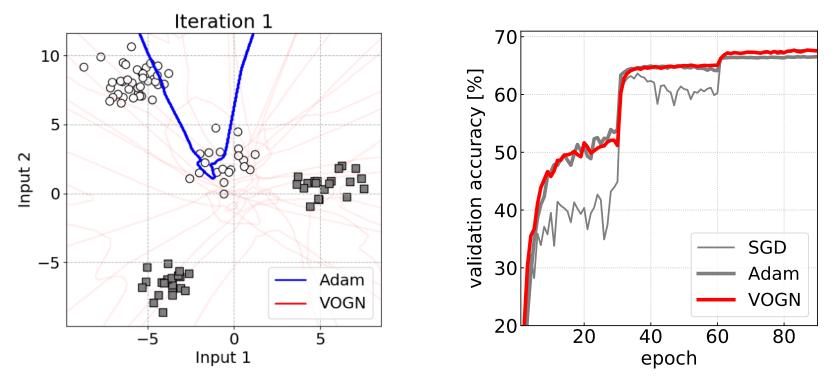
#### **Uncertainty in Logistic Regression**



1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." *ICML* (2018).

## **Uncertainty in Deep Nets**

#### VOGN: A modification of Adam but match the performance on ImageNet



Code available at <a href="https://github.com/team-approx-bayes/dl-with-bayes">https://github.com/team-approx-bayes/dl-with-bayes</a>

Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." *ICML* (2018).
 Osawa et al. "Practical Deep Learning with Bayesian Principles." NeurIPS (2019).

#### BLR variant [3] got 1st prize in NeurIPS 2021 Approximate Inference Challenge

Watch Thomas Moellenhoff's talk at https://www.youtube.com/watch?v=LQInIN5EU7E.

#### Mixture-of-Gaussian Posteriors with an Improved Bayesian Learning Rule

Thomas Möllenhoff<sup>1</sup>, Yuesong Shen<sup>2</sup>, Gian Maria Marconi<sup>1</sup> Peter Nickl<sup>1</sup>, Mohammad Emtiyaz Khan<sup>1</sup>



1 Approximate Bayesian Inference Team RIKEN Center for AI Project, Tokyo, Japan

2 Computer Vision Group Technical University of Munich, Germany

Dec 14th, 2021 — NeurIPS Workshop on Bayesian Deep Learning

Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." *ICML* (2018).
 Osawa et al. "Practical Deep Learning with Bayesian Principles." NeurIPS (2019).
 Lin et al. "Handling the positive-definite constraints in the BLR." ICML (2020).

#### **Practical Deep Learning with Bayes**

How to estimate uncertainty with DL optimizers?

RMSprop

 $g \leftarrow \hat{\nabla}\ell(\theta)$  $h \leftarrow g \cdot g$  $s \leftarrow (1-\rho)s + \rho h$  $\theta \leftarrow \theta - \alpha g/\sqrt{s}$  $\sigma^2 \leftarrow 1/\sqrt{s}???$ 

Costs are exactly the same, but uncertainty quality is much better!!

Second-order BAyes (SOBA) [3]

$$g \leftarrow \hat{\nabla}\ell(\theta)$$
  

$$h \leftarrow g \cdot \sqrt{s} \cdot \epsilon$$
  

$$s \leftarrow (1-\rho)s + \rho h + \rho^2 h/(2s)$$
  

$$m \leftarrow m - \alpha g/s$$
  

$$\sigma^2 \leftarrow 1/s, \ \theta \leftarrow m + \epsilon \sim \mathcal{N}(0, 1/s)$$

Perturb the gradients to get Hessian Perturb according to the posterior Ensure s is always +ve

Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." *ICML* (2018).
 Osawa et al. "Practical Deep Learning with Bayesian Principles." NeurIPS (2019).

3. Lin et al. "Handling the positive-definite constraints in the BLR." ICML (2020).

#### Summary

- Why Bayes?
- Lifelong learning with Bayes
  - Use simple estimates of uncertainty
  - Use memory, sensitivity etc.
- A (simple) method to get good uncertainty out of Deep-Learning optimizers