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How to make AI that can 
adapt quickly?

Humans and animals are extremely good at this
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Human Learning at 
the age of 6 months.
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Converged at the 
age of 12 months



5

Transfer 
skills

at the age 
of 14 

months



Failure of AI in “dynamic” setting

6https://www.youtube.com/watch?v=TxobtWAFh8o The video is from 2017

Robots need quick adaptation to be deployed 
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh8o


Adaptation in Machine Learning

• Machines are bad in quickly adapting to changes
– Even small changes require a complete 

retraining-from-scratch 
– This is expensive, time consuming [1,2]
– Example: Tesla AI Data-Engine for “self-driving 

cars” takes 70000 GPU hrs [3]
• Difficult to apply to domains with “dynamic” setting
– Robotics, medicine, user interaction, 

epidemiology, climate science, etc. 
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1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s

https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s


Summary

• Why Bayes?
• Lifelong learning with Bayes
– Use simple estimates of uncertainty
– Use memory, sensitivity etc.

• A (simple) method to get good uncertainty 
out of Deep-Learning optimizers

8



Why Bayes?

Because uncertainty!
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Principle of Trial-and-Error
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Frequentist: Empirical Risk Minimization (ERM) or 
Maximum Likelihood Principle, etc.
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Deep Learning Algorithms:

Scales well to large data and complex model, and 
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Example: Which is a Better Fit?

Red

57%

Fr
eq

ue
nc

y

Magnitude of Earthquake
Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise” 11

Blue

43%

More data Less data
Red is more 
risky than 
the blue



Example: Which is a Better Fit?
Uncertainty: 
“What the 

model does 
not know”

12Real data from Tohoku (Japan). Example taken from Nate Silver’s book “The signal and noise”
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Magnitude of Earthquake
More data Less data

Choose less 
risky options!

Avoid data 
bias with 

uncertainty!



Bayesian Principles
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(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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Uncertainty Estimates for Image 
Segmentation
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)



What about lifelong 
continual learning?
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Lifelong Continual Learning
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subset of images
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Dog vs. Cat Lion vs. Tiger 

Update

Deep 


Network


Observe

categories

Update

Deep 


Network


Standard 
Deep 
Learning

Continual Learning: past classes never revisited

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the 
national academy of sciences 114.13 (2017): 3521-3526.

Standard training leads to catastrophic forgetting.



Which is a good classifier?
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Which is a good classifier?
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What you don’t know 
now, can hurt you later
“Uncertainty matters”

Misclassified by the red 
line, but not by the blue
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(By Roman Bachmann)

Bayesian Linear Regression (polynomials of degree 15)



Bayesian Principles

21

p(✓|D1) =
p(D1|✓)p(✓)R
p(D1|✓)p(✓)d✓

<latexit sha1_base64="DncnTbVeanoBVRLXa1jWS8YCVug=">AAACWnicdVFLSwMxGMyur77U+rh5MCiCvZRdRfSgUtCDRwXbCt1SsmnWBrMPk2+Fst0f6NWLCP4PT4LZrkq1+kFgmJmPTCZuJLgCy3oxzJnZufmFQrFUriwuLVdXVlsqjCVlTRqKUN64RDHBA9YEDoLdRJIR3xWs7d6dZXr7gUnFw+AahhHr+uQ24B6nBDTVq95Huw4MGJCR4xMYUCKS87Rn1/AJdjxJaKL1SWGUu2v4a6+WJg4PAP/j+7bhfg7SXnXbqlvjwdPA/gTbjdP623Fl8/GyV31y+iGNfRYAFUSpjm1F0E2IBE4FS0tOrFhE6B25ZR0NA+Iz1U3G1aR4RzN97IVSH51yzE5uJMRXaui72pnFV7+1jPxL68TgHXUTHkQxsIDmF3mxwBDirGfc55JREEMNCJVcZ8V0QHSjoH+jpEuwfz95GrT26vZ+/eAqawPlU0AbaAvtIhsdoga6QJeoiSh6Ru/GvLFgvJqmWTTLudU0PnfW0I8x1z8Admu3qA==</latexit>

p(D3|✓)p(D2|✓)p(D1|✓)p(✓)
<latexit sha1_base64="Er3weY3F4O2Aq5dcLppF3OP81+o="></latexit> p(✓|D1) =

<latexit sha1_base64="+GIzmnmtUQaXLqxKOt1LiBTgTwk=">AAACA3icbVDLSgNBEJyNrxhfq94UZDAI8RJ2FdGLEtCDxwjmAdllmZ1MkiGzD2Z6hbAGvPgR+gFePCji1Z/w5t84m3jQxIKGoqqb7i4/FlyBZX0ZuZnZufmF/GJhaXlldc1c36irKJGU1WgkItn0iWKCh6wGHARrxpKRwBes4ffPM79xw6TiUXgNg5i5AemGvMMpAS155lZccqDHgNw6AYEeJSK9GHr2Pj7Fnlm0ytYIeJrYP6RY2XnI8Fj1zE+nHdEkYCFQQZRq2VYMbkokcCrYsOAkisWE9kmXtTQNScCUm45+GOI9rbRxJ5K6QsAj9fdESgKlBoGvO7ND1aSXif95rQQ6J27KwzgBFtLxok4iMEQ4CwS3uWQUxEATQiXXt2LaI5JQ0LEVdAj25MvTpH5Qtg/LR1c6jTM0Rh5to11UQjY6RhV0iaqohii6Q0/oBb0a98az8Wa8j1tzxs/MJvoD4+Mb/uua0Q==</latexit>

p(D3|✓)p(D2|✓)p(✓|D1)
<latexit sha1_base64="rDPoMLGueyZxm0Q/LQRAvGpgXWE="></latexit>

p(✓|D2,D1) =
p(D2|✓)p(✓|D1)R
p(D2|✓)p(✓|D1)d✓

<latexit sha1_base64="5IKqIlUc+Wi0J7ui/TYNIYOyjxk="></latexit>

p(✓|D2,D1) =
<latexit sha1_base64="FhI/WGBzg4B+8p/CGzIMDqOWUvA=">AAACEnicbVC7SgNBFJ2Nrxhfq5aCDAYhAQm7EdFGCWhhGcE8IBvC7GSSDJl9MHNXCGu+wcZG/8PGQhFbKzv/xtkkRUw8MHDmnHu59x43FFyBZf0YqYXFpeWV9GpmbX1jc8vc3qmqIJKUVWggAll3iWKC+6wCHASrh5IRzxWs5vYvE792x6TigX8Lg5A1PdL1eYdTAlpqmfkw50CPAbl3PAI9SkR8NWwVj/D0187jc9wys1bBGgHPE3tCsqX9pwTP5Zb57bQDGnnMByqIUg3bCqEZEwmcCjbMOJFiIaF90mUNTX3iMdWMRycN8aFW2rgTSP18wCN1uiMmnlIDz9WVyaJq1kvE/7xGBJ2zZsz9MALm0/GgTiQwBDjJB7e5ZBTEQBNCJde7YtojklDQKWZ0CPbsyfOkWizYx4WTG53GBRojjfbQAcohG52iErpGZVRBFD2gF/SG3o1H49X4MD7HpSlj0rOL/sD4+gXyyaC2</latexit>

(1) Keep your options open

(2) Revise with new evidence

Similar ideas in sequential/online decision-making 
(uncertainty/randomization). Computation is infeasible.



Weight regularizers
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1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017

Computing posteriors exactly is infeasible, but we 
could approximate them [1]. One option is to use 
weight regularizer known as the Elastic-Weight 
Consolidation (EWC)

Weight uncertainty 
(Hessian/Fisher etc.)
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Gianma and Lu will show later how to compute 
S_old within a deep-learning optimizer.



Uncertainty = Memory = Sensitivity

An out of the box idea!
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Memory-based Methods
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Task 1

Task 2
Task 3

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurIPS, 2019 
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Class 0

Class 1

Avoid forgetting by using “memorable examples” [1,2]
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.
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1. Tailor, Chang, Swaroop, Nalisnick, Solin, Khan, Memory maps to understand models (under review)
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Understand the memory of a model.



Continual Learning on ImageNet
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1. Khan and Swaroop, Knoweldge-Adaptation Priors, NeurIPS 2021
2. Daxberger et al. Improving CL by Accurate Gradient Reconstruction of the Past (under review).

K-prior allows us to optimally combine model and 
data to get good accuracy with little memory.
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Figure 4: Results on ImageNet-1000. Kprior+EWC+Replay performs favorably across a range of
memory sizes (left; x-axis log-scaled). It also suffers less from forgetting (relative to Batch Joint)
with an increasing number of tasks, here exemplary shown at the largest memory size of 10K (right).

Results. Fig. 3 shows our results on Split-TinyImageNet. We found that the Replay error correction
term does not help on this benchmark, so we representatively plot just Kprior and Kprior+EWC.2
We again see that Kprior+EWC can substantially improve over Kprior (especially at small mem-
ory sizes) and Online EWC (Fig. 3 left). It also compares favourably against a diverse range of
other strong CL methods across all three CL paradigms: 1) memory/rehearsal – iCaRL (Rebuffi
et al., 2017), GEM (Lopez-Paz & Ranzato, 2017), R-FM & R-PM (Delange et al., 2021), 2) weight-
regularization – LwF (Li & Hoiem, 2017), EBLL (Rannen et al., 2017), EWC (Kirkpatrick et al.,
2017), SI (Zenke et al., 2017a), MAS (Aljundi et al., 2018), mode-IMM (Lee et al., 2017), and 3)
architectural – PackNet (Mallya & Lazebnik, 2018), HAT (Serra et al., 2018) (Fig. 3 right).3

5.4 RESULTS ON IMAGENET-1000

Setup. We consider the ImageNet-1000 benchmark proposed by Rebuffi et al. (2017), which ran-
domly (uniformly) splits the full ImageNet dataset Deng et al. (2009) of ⇠1.2M data points into a
sequence of 10 tasks with 100 classes and ⇠120K data points each. Following Rebuffi et al. (2017),
we use a ResNet-18 with ⇠11M model parameters. For training on each task, we use the ImageNet
reference training pipeline (with 40 epoch configuration) of the FFCV library (Leclerc et al., 2022).4

Results. Fig. 4 shows our results on ImageNet-1000. We consider memory sizes between 200 and
10K per task, where the latter amounts to just under 10% of the data. The observed trends qual-
itatively match those from previous experiments. In particular, Kprior underperforms for small
memory sizes, and while it improves with increasing memory, it peaks at a 5K memory and then
even starts declining. We hypothesize that this is again due to accumulation of the NN error, which
might become more severe with a larger memory as more data points can contribute to the error. This
is evidenced by the fact that correcting for the NN error (Kprior+Replay) substantially boosts
performance at a 10K memory (but it remains poor at small memories). In contrast, Kprior+EWC
again improves accuracy only for small memories. Finally, Kprior+EWC+Replay combines the
benefit of both error correction terms to perform well across all memory sizes. It also again forgets
less along the task sequence, demonstrating that it better mitigates error accumulation.

6 CONCLUSION

We proposed to address the CL problem in a theoretically-grounded way by explicitly approxi-
mating the optimal model obtained via batch-training on all tasks jointly. To this end, we devel-
oped Kprior+EWC+Replay, which efficiently re-uses prior knowledge by combining principles from
function-regularization, weight-regularization, and experience replay. Empirically, we demonstrated
the effectiveness and scalability of our method across memory sizes, compared to various baselines.

2This is likely because almost perfect train accuracy is attained on all tasks (see e.g. Table 14 in Delange
et al. (2021)). Thus, eNN in Eq. (7) is close to zero, such that NN error correction cannot boost performance.

3Results are from Delange et al. (2021); their total memory sizes [4500, 9000] equal [500, 1000] per task.
4For all details of the training procedure, see https://github.com/libffcv/ffcv-imagenet/.
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How to compute uncertainty 
for deep learning?

Algorithms as special cases of the 
Bayesian Learning Rule [1], which 

allows us to add uncertainty for free 

281. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
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Uncertainty in Logistic Regression
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Logistic Regression
Minibatch = 5,
Learning rates = (0.01, 0.01)

 Frequentist (Adam)
Bayes (VOGN,mean)
Bayes (samples)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Variational Online 
Gauss-Newton 
method



Uncertainty in Deep Nets
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).

Code available at https://github.com/team-approx-bayes/dl-with-bayesFigure 1: Comparing VOGN [22], a natural-gradient VI method, to Adam and SGD, training ResNet-
18 on ImageNet. The two left plots show that VOGN and Adam have similar convergence behaviour
and achieve similar performance in about the same number of epochs. VOGN achieves 67.38% on
validation compared to 66.39% by Adam and 67.79% by SGD. Run-time of VOGN is 76 seconds per
epoch compared to 44 seconds for Adam and SGD. The rightmost figure shows the calibration curve.
VOGN gives calibrated predictive probabilities (the diagonal represents perfect calibration).

We demonstrate practical training of deep networks by using recently proposed natural-gradient VI38

methods. These methods resemble the Adam optimiser, enabling us to leveraging existing techniques39

for initialisation, momentum, batch normalisation, data augmentation, and distributed training. As a40

result, we obtain similar performance in about the same number of epochs as Adam when training41

many popular deep networks (e.g., LeNet, AlexNet, ResNet) on datasets such as CIFAR-10 and42

ImageNet. See Fig. 1 for Imagenet. The results show that, despite using an approximate posterior, the43

training methods preserve the benefits of Bayesian principles. Compared to standard deep-learning44

methods, the predictive probabilities are well-calibrated and uncertainties on out-of-distribution45

inputs are improved. Our work shows that practical deep learning is possible with Bayesian methods46

and aims to support further research in this area.47

Related work. Previous VI methods, notably by Graves [15] and Blundell et al. [4], require signifi-48

cant implementation and tuning effort to perform well, e.g., on convolution neural networks (CNN).49

Slow convergence is found to be problematic for sequential problems [43]. There appears to be no50

reported results with complex networks on large problems, such as ImageNet. Our work solves these51

issues by borrowing deep-learning techniques and applying them to natural-gradient VI [22, 51].52

In their paper, Zhang et al. [51] also employed data augmentation and batch normalisation for a53

natural-gradient method called Noisy K-FAC (see Appendix A) and showed results on VGG on54

CIFAR-10. However, a mean-field method called noisy Adam was found to be unstable with batch55

normalisation. In contrast, we show that a similar method, called Variatonal Online Gauss-Newton56

(VOGN), proposed by Khan et al. [22], works well with such techniques. We show results for57

distributed training with noisy K-FAC on Imagenet, but do not provide extensive comparisons. Many58

of our techniques can be used to speed-up noisy K-FAC too, which is promising.59

Many other approaches have recently been proposed to compute posterior approximations by training60

deterministic networks [44, 36, 37]. Similarly to MC-dropout, the posterior approximation is not61

flexible and it is difficult to improve the accuracy of the posterior approximations. On the other hand,62

VI offers a much more flexible alternative to apply Bayesian principles to deep learning.63

2 Deep Learning with Bayesian Principles and Its Challenges64

The success of deep learning is partly due to the availability of scalable and practical methods for65

training deep neural networks (DNNs). Network training is formulated as an optimisation problem66

where a loss between the data and the DNN’s predictions is minimised. For example, in a supervised67

learning task with a dataset D of N inputs xi and corresponding outputs yi of length K, we minimise68

a loss of the following form: ¯̀(w) + �w
>
w, where ¯̀(w) := 1

N

P
i `(yi, fw(xi)), fw(x) 2 RK

69

denotes the DNN outputs with weights w, `(y, ŷ) denotes a differentiable loss function between an70

2

VOGN: A modification of Adam but match the 
performance on ImageNet

https://github.com/team-approx-bayes/dl-with-bayes


BLR variant [3] got 1st prize in NeurIPS 
2021 Approximate Inference Challenge
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Watch Thomas Moellenhoff’s talk at 
https://www.youtube.com/watch?v=LQInlN5EU7E.
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RMSprop
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Second-order BAyes (SOBA) [3]
<latexit sha1_base64="mYgElnsE0E+ATeC3djWstNla728="></latexit>

g  r̂`(✓)
h g · g
s (1� ⇢)s+ ⇢h

✓  ✓ � ↵ g/
p
s

<latexit sha1_base64="XtKxBwyRlIEYsOfOAgJziGqGASg="></latexit>

g  r̂`(✓)
h g ·

p
s · ✏

s (1� ⇢)s+ ⇢h

m m� ↵ g/s

�2 1/s, ✓  m
<latexit sha1_base64="0dxYkuKWdHDgOKrfjlQ4HGRb3MM=">AAACGnicbVDLSgMxFM34rPVVdekmWISKUmekWJcFN66kgn1AZyiZ9LYNzWSGJCOUYb7Djb/ixoUi7sSNf2Om7UJbDwQO59ybnBw/4kxp2/62lpZXVtfWcxv5za3tnd3C3n5ThbGk0KAhD2XbJwo4E9DQTHNoRxJI4HNo+aPrzG89gFQsFPd6HIEXkIFgfUaJNlK34CTu5JJEQi/Fp9iFSDEeCuwqFmA3IHpICU9u05J9hp1zdZJ2C0W7bE+AF4kzI0U0Q71b+HR7IY0DEJpyolTHsSPtJURqRjmkeTdWEBE6IgPoGCpIAMpLJqlSfGyUHu6H0hyh8UT9vZGQQKlx4JvJLKua9zLxP68T6/6VlzARxRoEnT7UjznWIc56wj0mgWo+NoRQyUxWTIdEEqpNm3lTgjP/5UXSvCg7l+XKXaVYq87qyKFDdIRKyEFVVEM3qI4aiKJH9Ixe0Zv1ZL1Y79bHdHTJmu0coD+wvn4Avkqf+w==</latexit>

+✏ ⇠ N (0, 1/s)

How to estimate uncertainty with DL optimizers?

<latexit sha1_base64="i4cS+iFYyafRFOVbZzIozfW51Iw=">AAACKXicbVDLSgNBEJyN7/ha9ehlMCie4m4Q9ZaAF48KRoVsDLOT3mTI7MOZXiUs+zte/BUvCop69UecxBxMYkFDUdU9011+IoVGx/m0CjOzc/MLi0vF5ZXVtXV7Y/NKx6niUOexjNWNzzRIEUEdBUq4SRSw0Jdw7fdOB/71PSgt4ugS+wk0Q9aJRCA4QyO17FrmDR/JFLRz6mnRCdltJad7dNyQECBTKn6g7oGn7xRmOs9ptVpt2SWn7AxBp4k7IiUywnnLfvXaMU9DiJBLpnXDdRJsZkyh4BLyopdqSBjvsQ40DI1YCLqZDXfJ6a5R2jSIlakI6VD9O5GxUOt+6JvOkGFXT3oD8T+vkWJw0sxElKQIEf/9KEglxZgOYqNtoYCj7BvCuBJmV8q7TDGOJtyiCcGdPHmaXFXK7lH58OKwVDsexbFItskO2ScuOSY1ckbOSZ1w8kieyRt5t56sF+vD+vptLVijmS0yBuv7B1FOpzg=</latexit>

�2 1/
p
s???

Perturb the gradients to get Hessian
Perturb according to the posterior

Costs are exactly the 
same, but uncertainty 
quality is much better!!

<latexit sha1_base64="vzqy8MZTrt+Y0DOMhzP64eLwJ9w=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQEWpSinVZcOOygn1AE8tkMmmGTh7MTIQSsnLjr7hxoYhbv8Gdf+M0zUJbD1w4nHPvzL3HiRkV0jC+tdLK6tr6RnmzsrW9s7un7x/0RJRwTLo4YhEfOEgQRkPSlVQyMog5QYHDSN+ZXM/8/gPhgkbhnZzGxA7QOKQexUgqaaQfp1b+SMqJm8Fzi/vRfQP6F7UGFGfZSK8adSMHXCZmQaqgQGekf1luhJOAhBIzJMTQNGJpp4hLihnJKlYiSIzwBI3JUNEQBUTYab5BBk+V4kIv4qpCCXP190SKAiGmgaM6AyR9sejNxP+8YSK9KzulYZxIEuL5R17CoIzgLBPoUk6wZFNFEOZU7QqxjzjCUiVXUSGYiycvk16jbl7Wm7fNartVxFEGR+AE1IAJWqANbkAHdAEGj+AZvII37Ul70d61j3lrSStmDsEfaJ8/ZNuXvg==</latexit>

+⇢2h/(2s)

Ensure s is always +ve



Summary

• Why Bayes?
• Lifelong learning with Bayes
– Use simple estimates of uncertainty
– Use memory, sensitivity etc.

• A (simple) method to get good uncertainty 
out of Deep-Learning optimizers
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