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The Goal of My Research

“To discover the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”
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Bayesian
Human learning ;A Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

My current research focuses on reducing this gap!

Parisi, German ., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

Friston, K. "The free-energy principle: a unified brain theory?." Nature reviews neuroscience (2010)
Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)
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Bayesian learning Deep learning

Bayesian models Deep models
(GPs, BayesNets, PGMs,) (MLP, CNN, RNN etc.)
Bayesian inference Stochastic training

(Bayes rule) (SGD, RMSprop, Adam)

_-
Can handle large data and complex models?
Scalable training?

Can estimate uncertainty?

Can perform sequential / active /online /
incremental learning?

v
v
X
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Bringing the two together

To combine their complimentary
strengths to solve challenging
learning problems
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Deep Learning with Bayesian
Principles

Bayesian principles as a general principle

— To design/improve/generalize learning-algorithms
— By computing “posterior approximations”

Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and life-long learning

Impact: Everything with one common principle.



Is this different from
Bayesian Deep Learning?



Scope of the Tutorial

« Audience: Deep learners and Bayesians
« Goal: To bring the two together
 This tutorial is not about
— Bayesian deep-learning methods
— Classical Bayesian inference methods
— Approximate Bayesian Inference
— Uncertainty estimation
— Generative Models, VAE, etc.
— Gaussian processes and NN architectures



Disclaimer

* | might not have time to discuss many
important/relevant works
— If you think | should have included some of

those, please send me email and | will try to
include it the next time

* The content of the tutorial is based on my
own biased opinion (and expertise)

— Alot of it is based on my own work (about
40% or so)



Deep Learning
VS
Bayesian Learning



Deep Learning (DL)

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.
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Deep Learning (DL)

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
min £(D,0) = > lyi — folai)]> +~070
Loss 1 ¢ P K
Data Delep
Model Params Network

DL Algorithm: 0 < 0 — pH 'V £(0)

Scales well to large data and complex model, and
very good performance in practice.
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N
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Bayesian Principles

1. Sample 0 ~ p(6) prior
N

2.Score  p(D|0) = | | p(yil fo(x:)) Likelinood
3. Normalize | .

Posterior Likelihood X Prior

 pDO)p(0)
POID) = T D10)p(6) 0

A global method: Integrates over all models
Does not scale to large problem

17



Which is a good classifier?
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Which is a good classifier?
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Which is a good classifier?

“What the model
does not know”

19



Sequential Bayesian Inference

p(D110)p(0)
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Sequential Bayesian Inference

p(D110)p(0)

POIDY) = D 16)p(6)d0
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Sequential Bayesian Inference

p(|D;) = p(D1]0)p(0)

[ p(D1|0)p(0)do
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Sequential Bayesian Inference

1 O
@)

O

s oDy = PDUO0)

fp(D1 0)p(0)do

Set the prior to the previous
posterior and recompute:

_ p(D2|0)p(0|D1)
| p(D210)p(0|D;)do

p(‘ﬂDZa Dl)

The global property enables sequential update

20



Bayesian learning Deep learning

Integration (global) Differentiation (local)
(D\H) (9) _
p(0|D — L

e
Can handle large data and complex models?

Scalable training? x
Can estimate uncertainty? /

Can perform sequential / active /online / v

X X (s«

incremental learning?

21



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and life-long learning

Impact: Many learning-algorithms with a
common set of principles.

22
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Bayesian Principles

Various types of integrals (approximations)

p(D|6)p(0)
| p(D|0)p(6)do

Posterior averaging: E(f(0)|D) =~ /f q(0|D)do

Posterior computation: ¢(6|D) =~

Posterior marginalization ¢(6;|D) ~ /q(eyp)dg/i



Bayesian Principles

Various types of integrals (approximations)

(DoY)
Q(Q‘D)“’f p(D10)p(6)d0

Posterior averaging: E(f(0)|D) =~ /f q(0|D)do

Posterior computation:

Posterior marginalization ¢(6;|D) ~ /q(eyp)dg/i

Our focus is on the first one where we approximate
the posterior by solving an optimization problem
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Bayesian principles to derive
Learning-Algorithms

Main ideas: Introduce “posterior approximations”
and the “Bayesian learning rule” to estimate them

&g\ o

Bayes’ rule Ensemble Newton paogcent
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Learning-Algorithms from Bayesian Principles

Mohammad Emtiyaz Khan
RIKEN center for Advanced Intelligence Project
Tokyo, Japan

Haavard Rue
CEMSE Division
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

August 16, 2020
Version 0.7

Abstract

Machine-learning algorithms are commonly derived using ideas from optimization and statistics,
followed by an extensive empirical efforts to make them practical as there is a lack of underlying
principles to guide this process. In this paper, we present a learning rule derived from Bayesian
principles, which enables us to connect a wide-variety of learning algorithms. Using this rule, we can
derive a wide-range of learning-algorithms in fields such as probabilistic graphical models, continuous
optimization, and deep learning. This includes classical algorithms such as least-squares, Newton’s
method, and Kalman filter, as well as modern deep-learning algorithms such as stochastic-gradient
descent, RMSprop and Adam. Overall, we show that Bayesian principles not only unify, generalize,

and improve existing learning-algorithms, but also help us design new ones. [This is a working
draft and a work in progress]|

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)

25
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Exponential Family Approximations

Natural Sufficient Expectation
parameters Statistics parameters
| |
a(6) o exp [ATT(6)] = Eg[T(6)]

N(Om, S™) oc exp _—%(9 —m)' S0 — m)]

x exp |(Sm)' 0+ Tr (—599T>]
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Exponential Family Approximations

Natural Sufficient Expectation
parameters Statistics parameters
| |
a(6) o exp [ATT(6)] = Eg[T(6)]

N(Om, S™) oc exp _—%(9 —m)' S0 — m)]

x exp |(Sm)' 0+ Tr (—599T>]

" Gaussian distribution q(0) := N (0m,571)
Natural parameters A= {Sm,—-5/2}
Expectation parameters 1 := {E,(0),E,(06")} )

.

26



Bayesian Learning Rule

min £(f) vs min E ) [£(0)] — H(q)
0 qeC 1" Entropy

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017). 27
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min £(f) vs min E ) [£(0)] — H(q)
0 qeC 1" Entropy

Deep Learning algo: § « § — pH, "V 4(6)

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-

conjugate models to inferences in conjugate models.” Alstats (2017).
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Bayesian Learning Rule

min £(f) vs min E ) [£(0)] — H(q)
0 qeC 1" Entropy

Deep Learning algo: § « § — pH, "V 4(6)
Bayes learning rule: A < A — pV, (E,[£(0)] — H(q))

| |
Natural and Expectation parameters of
an exponential family distribution g

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017). 27



Bayesian Learning Rule

min £(f) vs min E ) [£(0)] — H(q)
0 g€ 10 Entropy
Deep Learning algo: § « § — pH, "V 4(6)

Bayes learning rule: A <— XA — pV,, (E,[¢(0)] — H(q))
Natu;al and Expectalltion parameters of
an exponential family distribution g
Deep Learning algorithms can be obtained by
1. Choosing an appropriate approximation g,
2. Giving away the “global” property of the rule

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-

conjugate models to inferences in conjugate models.” Alstats (2017). 27



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and life-long learning

Impact: Many learning-algorithms with a
common set of principles.

28



Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 29
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m

_Entropy H(q) := log(2m)/2 )

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 29
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

[ “Global” to “Iocal’] m <= m — pV,, Eq [£(6)]
B [l@)] ~ €m) | X« X = pV,, (E,[£(8)] — H(q))
Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m

_Entropy H(q) := log(2m)/2 )
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available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 29
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)
Bayes Learn Rule: m < m — pV,,£(m)

“Global” to “local’] T < m — pV g [€(6)]

Eg[((0)] = 6m) |\« X\ — pV, (E,[6(6)] — H(q))
Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(§) := A"(m, 1)
Natural parameters Ai=m
Expectation parameters 1 :=E,[0] = m

_Entropy H(q) := log(2m)/2 )

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 29
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Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)
Bayes Learn Rule: m < m — pV,,£(m)

“Global” to “local’] T < m — pV g [€(6)]

Eg[((0)] = 6m) |\« X\ — pV, (E,[6(6)] — H(q))
Derived by choosing Gaussian with fixed covariance

" Gaussian distribution q(0) :=N(m,1) ) Using
Natural parameters Ai=m stochastic
Expectation parameters p := E,[0] = m gradients,

 Entropy H(g) :=1log(2m)/2 | we get SGD

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 29
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Can we obtain Covariances from SGD?

SGD with constant step size = Bayes approx [1,2,3].
So, can we obtain covariances from SGD iterations?

1. Mandt et al. (2017). Stochastic gradient descent as approximate Bayesian inference. JMLR

2. Chaudhari and Soatto (2018). Stochastic gradient descent performs variational inference, converges to
limit cycles for deep networks. ITA Workshop

3. Maddox et al. (2019). A simple baseline for Bayesian uncertainty in deep learning. NeurlPS.
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SGD estimates only the mean, so the covariance can
be arbitrary, e.g., choosing ¢(6) := N (m,>) we get

m < m — pXV,b(m)
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Can we obtain Covariances from SGD?

SGD with constant step size = Bayes approx [1,2,3].
So, can we obtain covariances from SGD iterations?

SGD estimates only the mean, so the covariance can
be arbitrary, e.g., choosing ¢(6) := N (m,>) we get

m < m — pXV,b(m)

Estimation of covariance requires additional
computation (essentially the pre-conditioner).

1. Mandt et al. (2017). Stochastic gradient descent as approximate Bayesian inference. JMLR

2. Chaudhari and Soatto (2018). Stochastic gradient descent performs variational inference, converges to
limit cycles for deep networks. ITA Workshop

3. Maddox et al. (2019). A simple baseline for Bayesian uncertainty in deep learning. NeurlPS.
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 31



Newton’s Method from Bayes

Newton’s method: 0 < 6 — H, " [Val(0)]

A= A= pV, (Eq[£(0)] — H(g))

Derived by choosing a multivariate Gaussian

" Gaussian distribution ¢(6) := N (6]m, S~}
Natural parameters A= {Sm,—S5/2}

~

_ Expectation parameters = {Eq(0),Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= A= pV,, (Eqll(0)] — H(g)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= A= p(VLEq[6(0)] + A) [_V,UH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

A= (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]
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[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

)
Sm ¢ (1 p)Sm — pVe, (0)E,[£(0)

\

A (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 31



Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

)
Sm ¢ (1 p)Sm — pVe, (0)E,[£(0)

1 1
_55 < —(1 — ,0)55 + ,OVEQ(HHT)EQV(Q)]

\

A (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )
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Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

-
S (1— p)Sm — pVs, 0 Eqll(0)
S (1 — IO)S — p2vK(9QT)Eq[€(9)]

\

A (1= p)A = pV,E [£(0)) [_VMH(Q) — )‘]

Derived by choosing a multivariate Gaussian

[ Gaussian distribution ¢(6) := N (0jm,S™')
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 31



Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

[Sm — (1 —=p)Sm — pVi,_(6)Eq€(0)] J
S < (1 —p)S — p2Vg 997 Eq[€(0)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

Express in terms of gradient and Hessian of loss:
Ve, 0)Eq[(0)] = Eg[Vol(0)] — 2B, [Holm

Vi, 007)Eq[€(0)] = Eq|Ho

Sm (1= p)Sm — pVe, (o) E[€(0)]
S (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

“Global” to “local”
Eq[4(0)] ~ £(m)

Express in terms of gradient and Hessian of loss:
Ve, 0)Eq[(0)] = Eg[Vol(0)] — 2B, [Holm

Vi, 007)Eq[€(0)] = Eq|Ho

Sm (1= p)Sm — pVe, (o) E[€(0)]
S (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [V/(0)]

(" N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

“Global” to “local”
Eq[4(0)] ~ £(m)
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Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]
s N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

“Global” to “local”
Eq[4(0)] ~ £(m)

32



Gaussians Approximation by
Second-order Optimization

To estimate ¢(0) := N (0|m,S™1)
m < m — pS~ 'V, l(m)
S+ (1—p)S+pH,,

Estimate of mean requires 1st-order information
Estimate of covariance requires 2nd-order information [1]

1. Opper and Archambeau, C. (2009). The variational Gaussian approximation revisited. Neural
Computation, 21(3):786—792.



Gaussians Approximation by
Second-order Optimization

To estimate ¢(0) := N (0|m,S™1)
m < m — pS~ 'V, l(m)
S+ (1—p)S+pH,,

Estimate of mean requires 1st-order information
Estimate of covariance requires 2nd-order information [1]

Can’t escape this principle, but can reduce the
computation with heuristics and approximations!

1. Opper and Archambeau, C. (2009). The variational Gaussian approximation revisited. Neural
Computation, 21(3):786—792.



Optimization vs Bayes

What is the difference between the solutions?
m <+ m — pSTE,[Vel(0)]
S« (1= p)S+ pEq[Hoy)
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S« (1 —=p)S + pEq[Ho] S« = Eq, [H]



Optimization vs Bayes

What is the difference between the solutions?
m <+ m — pSTE,[Vel(0)] # 0. [ Vol(0)] =0
S (1—p)S+pE,Hg S« =, [Hy]

The optimality conditions are different for g* and theta*
Bayes Optimization

1st-order:

2nd-order:
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Bayes Optimization
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2nd-order:



Optimization vs Bayes

What is the difference between the solutions?
m <+ m — pSTE,[Vel(0)] # 0. [ Vol(0)] =0
S (1—p)S+pE,Hg S« =, [Hy]

The optimality conditions are different for g* and theta*
Bayes Optimization

1st-order: E,, [V@f(@): — () Vgé(é’*)] — (0
Eq* [H@ — () Hg* — ()

2nd-order:



The Optimization Solution

Bayes Optimization
Vol(0,)] =0
HQ* > 0

Region with
a large loss




The Optimization Solution

Bayes Optimization
Eq. [Vol(0)] =0 Vol(0.)] =0
E,, [Hg] = 0 Hy >0

Q: What does the Bayes solution look
like? Locate the mean.

Region with Loss
a large loss




The Bayesian Solution

Bayes

Eq* [HH:

Region with
a large loss

Optimization
=0  Vel(0,)] =0
~ 0 Hy =0




The Bayesian Solution

Bayes Optimization
Eq [Val(0)] =0 Vgl(8,)] = 0
E, [Hg] = 0 Hy =0

The Bayes solution seeks robustness!

Region with Loss
a large loss




Robustness of Bayes: Example I

Bayesian solution seeks “flatter” minima

Initialization

N

Flat minima

v

() Sharp minima

gx(w)

Wi,1 M Wi 2 w —

1. Khan, et al. “Variational Adaptive Newton Method for Explorative Learning" arXiv (2017).



RMSprop/Adam from Bayes

Bayesian Learning rule for
RMSprop multivariate Gaussian

s (1—p)s+p[VUO)> S (1—p)S+ p(Hy)
0 0—a(/s+08)1Vved) m<+m—aS  Vel(0)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 38
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RMSprop/Adam from Bayes

Bayesian Learning rule for
RMSprop multivariate Gaussian

s (1—p)s+p[VUO)> S (1—p)S+ p(Hy)
0 0—a(/s+08)1Vved) m<+m—aS  Vel(0)

To get RMSprop, make the following choices
« Choose Gaussian with diagonal covariance
* Replace Hessian by square of gradients

« Add square root for scaling vector

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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RMSprop/Adam from Bayes

Bayesian Learning rule for
RMSprop multivariate Gaussian

s (1—p)s+p[VUO)> S (1—p)S+ p(Hy)
0 0—a(/s+08)1Vved) m<+m—aS  Vel(0)

To get RMSprop, make the following choices

« Choose Gaussian with diagonal covariance

* Replace Hessian by square of gradients

« Add square root for scaling vector

For Adam, use a Heavy-ball term with KL divergence
as the momentum (Appendix E in [1], [2])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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Summary

« Gradient descent is derived using a Gaussian with fixed
covariance, and estimating the mean

* Newton’s method is derived using multivariate Gaussian

* RMSprop is derived using diagonal covariance

* Adam is derived by adding heavy-ball momentum term

* Dropout is derived using “spike and slab mixture”.

* For “ensemble of Newton”, use Mixture of Gaussians [1]

« STE is derived using Bernoulli distribution for Binary NN [2]

* To derive DL algorithms, we need to switch from a “global” to
“local” approximation E,[£(0)] = £(m)

* Then, to improve DL algorithms, we just need to add some “global”
touch to the DL algorithms

1. Lin, Khan, Schmidt. "Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-
family Approximations." ICML (2019).
2. Meng, Bachman, Khan, Training Binary Neural Networks using the Bayesian Learning Rule ICML (2019).



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and life-long learning

Impact: Many learning-algorithms with a
common set of principles.



Bayes as Optimization

p(D|0)p(0)
| p(D|0)p(0)do

p(0|D) =



Bayes as Optimization

D\é’ [
o|D) £(6) := —1log p(D)6) ]
p(6|D) S Dl0p d@ gp(D|0)p(0)
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Bayes as Optimization

p(D|6)p
p(0]D) = & p“g v (g —log p(D|0)p(0 ))
— arg 1’%1721 K (9) [5(9)] (Q)

] Entropy
All dlstrlbutlon Distribution

= E,[0(0)] + E,[log ¢(0)




Bayes as Optimization

p\e (
% £(0) = — log p(DI0)p(9)
p(OID) = fp D|0)p dé’
= argmin E a(6) [5(9)] H(q)
EP ] Entropy
All dlstrlbutlon Distribution
4 (9) N
q
=[E,[¢(0)] + E,[logq(0)] =E, {log 65(9)}




Bayes as Optimization

p\e (
01D 0(6) := —log p(D|6) )
p(OID) = [ p(D|0)p dé’ 9)p(6)
= arg 1’%171;1 Ey (o) [5(9)] H(q)
i Entropy
All dlstrlbutlon Distribution
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Bayes as Optimization

p\e (
% ((0) = — log p(DI0)p(0)
p(OID) = [ p(D|0)p dé’
= argmin E a(6) [5(9)] H(q)
EP ] Entropy
All dlstrlbutlon Distribution
~ (9) ™
q
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Bayes as Optimization

p(D|6)p (
01D 0(6) := —log p(D|6) )
p(OID) = fpp\e dé’ 9)p(6)
= argmin E, £(0)] — H(q)
EP ] Entropy
All dlstrlbutlon Distribution
~ (9) ~
q
=[E,[¢(0)] + E,[logq(0)] =E, {log 65(9)}
= ¢.(0) < ="V  p(DIh)p(8) x p(6|D)

- J




Bayes as Optimization

p(DI]0)p(H) (
POID) = D16\ p(6)ds (Pl)pE)
= argmin E ) [0(0)] — H(q)
9€P q| Entropy
All distribution Distribution
- (9) ~
q
=[E,[¢(0)] + E,[logq(0)] =E, {log 65(9)}
= a:(0) e (D)) xpOID)

Good news: This holds for a generic loss function!

Zellner (1988), Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006) "
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References for Bayes as Optimization

arg min E,0)£(0)] — H(q)

Bayesian statistics

1.Jaynes, Edwin T. "Information theory and statistical mechanics." Physical review (1957)

2. Zellner, A. "Optimal information processing and Bayes's theorem." The American
Statistician (1988)

3. Bissiri, Pier Giovanni, Chris C. Holmes, and Stephen G. Walker. "A general framework for
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4. Shawe-Taylor, John, and Robert C. Williamson. "A PAC analysis of a Bayesian
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Bayes with Approximate Posterior

arg {Jniﬂ ]EqA(Q) £(0)] — H(q)
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All distribution Distribution

Restrict the set of distribution from P to Q
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Bayes with Approximate Posterior

argmin E, ) [£(0)] — H(q)
q€r qf( ) Entropy

All distribution Distribution

Restrict the set of distribution from P to Q

o B
arg min 20 1€(0)] — H(q)

This is known as Variational Inference, but along
with the Bayesian learning rule, it enables us to
derive many more algorithms (including Bayes’
rule). So this is not just a method, but a principle.



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.
((0) := —log p(D|0)p(0)

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.
((0) := —log p(D|)p(0) = —ApT'(6)

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.
5((9) = lng(D‘H)p(H) — —)\T(g) __ Sufficient

statistics of g

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017). 44



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.

((0) = —log p(D|0)p(8) = —AHT (O~ msitien

statistics of g

[@(9) = (y— X0)T (y — X0) + 076 J

Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017). 44



Conjugate Bayesian Inference from
Bayesian Principles

Ex: Linear model, Kalman filters, HMM, etc.
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Conjugate Bayesian Inference from
Bayesian Principles

The following algorithms can be obtained by
setting M. = \p
» Forward-backward algorithm [2]
— Kalman filters, HMM etc.
» Stochastic Variational Inference [3]

* Variational message passing [4]

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).

2. Binder et al.. Space-Efficient Inference in Dynamic Probabilistic Networks. IJCAI (1997).

3. Hoffman et al. Stochastic variational inference. JMLR (2013)

4. Winn and Bishop. "Variational message passing." JMLR (2005) 45
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Laplace Approximation

Derived by choosing a multivariate Gaussian, then
running the following Newton’s update

‘m < m — pS_lvmé(my

\S A (1 — ,O)S T PHm<—)— Hessian at m

Bayesian principles we discussed are general
principles to derive learning algorithms

Calling them variational inference limits their scope!
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References for Posterior

Approximations

arg min K, [£(0)] — H(q)
o . qe
 Variational inference

1. Hinton, Geoffrey, and Drew Van Camp. "Keeping neural networks simple by minimizing the
description length of the weights." COLT 1993.

2.Jordan, Michael I., et al. "An introduction to variational methods for graphical
models." Machine learning 37.2 (1999): 183-233.

47



References for Posterior

Approximations
argmin E, ) [£(0)] — H(q)

. . qe9
 Variational inference
1. Hinton, Geoffrey, and Drew Van Camp. "Keeping neural networks simple by minimizing the
description length of the weights." COLT 1993.
2.Jordan, Michael I., et al. "An introduction to variational methods for graphical
models." Machine learning 37.2 (1999): 183-233.

* Entropy-regularized / Maximum-entropy RL

3. Williams, Ronald J., and Jing Peng. "Function optimization using connectionist
reinforcement learning algorithms." Connection Science 3.3 (1991): 241-268.

4. Ziebart, Brian D. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Diss. figshare, 2010. (see chapter 5)
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reinforcement learning algorithms." Connection Science 3.3 (1991): 241-268.

4. Ziebart, Brian D. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. Diss. figshare, 2010. (see chapter 5)

» Parameter-Space Exploration in RL

5. Ruckstiess, Thomas, et al. "Exploring parameter space in reinforcement learning." Paladyn,
Journal of Behavioral Robotics 1.1 (2010): 14-24.

6. Plappert, Matthias, et al. "Parameter space noise for exploration." arXiv preprint
arXiv:1706.01905 (2017)

7..Fortunato, Meire, et al. "Noisy networks for exploration." arXiv preprint
arXiv:1706.10295 (2017).
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More References for Posterior

Approximations
Evolution strategy *'®geo Eq(o) 1€(9)]

1.Ingo Rechenberg, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution (PhD thesis) 1971.

Gaussian Homotopy

2. Mobahi, Hossein, and John W. Fisher lll. "A theoretical analysis of optimization by
Gaussian continuation." Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

Smoothing-based Optimization

3. Leordeanu, Marius, and Martial Hebert. "Smoothing-based optimization." 2008 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2008.

Graduated Optimization

4.Hazan, Elad, Kfir Yehuda Levy, and Shai Shalev-Shwartz. "On graduated optimization for
stochastic non-convex problems." International conference on machine learning. 2016.

Stochastic Search

5.Zhou, Enlu, and Jiagiao Hu. "Gradient-based adaptive stochastic search for non-
differentiable optimization." IEEE Transactions on Automatic Control 59.7 (2014):
1818-1832.
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Bayesian Learning Rule and Related
Works

min K, ) [£(6)] = H(q)

qe 9

Bayes learning rule: A < X\ — pV , (E,[¢(0)] — H(q))
Natural-Gradient VI: X < X\ — pF, 7'V, (E,[¢(0)] — H(q))

N Fisher Information Matrix

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).
2. Raskutti, Garvesh, and Sayan Mukherjee. "The information geometry of mirror descent." IEEE

Transactions on Information Theory 61.3 (2015): 1451-1457. 4



Bayesian Learning Rule and Related
Works

min K, ) [£(6)] = H(q)

qe 9

Bayes learning rule: A < X\ — pV , (E,[¢(0)] — H(q))
Natural-Gradient VI: X < X\ — pF, 7'V, (E,[¢(0)] — H(q))

N Fisher Information Matrix

Also equivalent to a mirror-descent algorithm.The
Geometry of the mirror-descent is defined by the
log partition function of the posterior approximation.

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).
2. Raskutti, Garvesh, and Sayan Mukherjee. "The information geometry of mirror descent." IEEE

Transactions on Information Theory 61.3 (2015): 1451-1457. 4



References for Step C:
Natural-Gradient VI

1. Sato, Masa-aki. "Fast learning of on-line EM algorithm." Technical Report, ATR Human
Information Processing Research Laboratories (1999).

2. Sato, Masa-Aki. "Online model selection based on the variational Bayes." Neural
computation 13.7 (2001): 1649-1681.

3. Winn, John, and Christopher M. Bishop. "Variational message passing." Journal of Machine
Learning Research 6.Apr (2005): 661-694.

4. Honkela, Antti, et al. "Approximate Riemannian conjugate gradient learning for fixed-form
variational Bayes." Journal of Machine Learning Research 11.Nov (2010): 3235-3268.

5.Knowles, David A., and Tom Minka. "Non-conjugate variational message passing for
multinomial and binary regression." NeurlPS. (2011).

6. Hoffman, Matthew D., et al. "Stochastic variational inference." JMLR (2013).

7.Salimans, Tim, and David A. Knowles. "Fixed-form variational posterior approximation
through stochastic linear regression." Bayesian Analysis 8.4 (2013): 837-882.

8. Sheth, Rishit, and Roni Khardon. "Monte Carlo Structured SVI for Two-Level Non-
Conjugate Models." arXiv preprint arXiv:1612.03957 (2016).
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inference in non-conjugate models to inferences in conjugate models.” Alstats (2017).
10.Khan and Nielsen. "Fast yet simple natural-gradient descent for variational inference in

complex models." (2018) ISITA.
11.Zhang, Guodong, et al. "Noisy natural gradient as variational inference." ICML (2018).
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Black-Box VI & Bayesian Learning rule

Bayes learning rule: A <~ A — pV , (E,[£(0)] — H(q))
Black-Box VI[1]: A< XA — pV, (E,[¢(0)] — H(q))

Black-box VI is more generally applicable (beyond
exponential-family), but we cannot derive learning-
algorithms from it (even for conjugate Bayesian
models)

1. Ranganath, Rajesh, Sean Gerrish, and David Blei. "Black box variational inference." Artificial Intelligence
and Statistics. 2014.



Learning-Algorithms from Bayesian
Principles
Bayesian learning rule: A < A\ — pV , (E,[¢(0)] — H(q))

Given a loss, we can recover a variety of learning
algorithms by choosing an appropriate g

— Classical algorithms: Least-squares, gradient descent, Newton’s
method, Kalman filters, Baum-Welch, Forward-backward, etc.

— Bayesian inference: EM, [Laplace’s method, SVI, VMP.
— | Deep learning: SGD, RMSprop, Adam.

— Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2020) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and life-long learning

Impact: Many learning-algorithms with a
common set of principles.
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Uncertainty Estimation for
Deep Learning
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Uncertainty Estimation for Image
segmentation

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Uncertainty Estimation for Image

segmentation
Uncertainty

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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(Some) Bayesian Deep Learning
Methods

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).
3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).

4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).

5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).
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(Some) Bayesian Deep Learning
Methods

* SGD based (MC-dropout [1], SWAG [2],
Laplace [3])
— Pros: Scales well to large problems
— Cons: Not flexible

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).
3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).

4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).

5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).
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(Some) Bayesian Deep Learning
Methods

* SGD based (MC-dropout [1], SWAG [2],
Laplace [3])
— Pros: Scales well to large problems
— Cons: Not flexible
* Variational inference methods [4,5]
A= A= pVa (Eql€(8)] — H(q))
— Pros: Enable flexible distributions
— Cons: Do not scale to large problems (ImageNet)

1. Gal and Ghahramani. "Dropout as a bayesian approximation...” ICML. 2016.

2. Maddox, Wesley, et al. "A simple baseline for bayesian uncertainty in deep learning." arXiv (2019).

3. Ritter et al. "A scalable laplace approximation for neural networks." (2018).
4. Graves, Alex. "Practical variational inference for neural networks." NeurlPS (2011).
5. Blundell, Charles, et al. "Weight uncertainty in neural networks." ICML (2015).
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Scaling up VI to ImageNet

VOGN, an Adam-like algorithm, for uncertainty

Iteratipn 1 Entropy (VOGN)
10 o 0.68
| 0.66
5 0.64
o @ a |
~ |
2 o I,:.,p:'. 0.62
| 0.60
_5 ] o B 1D 0.58
5 —— Adam
a —— VOGN : | 0.56
-5 0 5 - 0 >
Input 1

Input 1

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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VOGN, an Adam-like algorithm, for uncertainty

Iteratipn 1 Entropy (VOGN)
10 o 0.68
| 0.66
5 0.64
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1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Variational Online Gauss-Newton

* Improve RMSprop with the Bayesian “touch”
— Remove the “local” approximation E [¢(0)] ~ ¢(m)
— Use a second-order approximation
— No square root of the scale

* Improve VOGN by using deep learning tricks

— Momentum, batch norm, data augmentation etc

RMSprop VOGN
g« VI(0) g + VL(9), where 6 ~ N (m,c?)
s ¢ (1= p)s + pg’ s (1—p)s+p(Xig;)
0 0—als+6 g m < m — a(s +v) Vel(0)
ol (s+7)7"

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).



Adam to VOGN

“Adam” to “VOGN?” in two lines of code change.

import torch
+import torchsso

train_loader = torch.utils.data.DatalLoader(train_dataset)
model = MLP()

-optimizer = torch.optim.Adam(model.parameters())
+optimizer = torchsso.optim.VOGN(model, dataset_size=len(train_loader.dataset))

Available at https://github.com/team-approx-bayes/dl-with-bayes

Uses many practical tricks of DL to scale Bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)s!
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VOGN on ImageNet

State-of-the-art performance and convergence rate,
while preserving benetfits of Bayesian principles
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1. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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BDL methods do not really know that they
are performlng badly under dataset shift

>507 T T =17
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Dataset Shift

1. Ovadia, Yaniv, et al. "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under
Dataset Shift." NeurlPS (2019). 63



Resources for Uncertainty in DL

* Yarin Gal’s tutorial (http://bdI101.ml/)
* Benchmarks by OATML (http://bdlb.ml/)

List of Benchmarks

Bayesian Deep Learning Benchmarks (BDL Benchmarks or bdlb for short), is an open-source framework that aims to
bridge the gap between the design of deep probabilistic machine learning models and their application to real-world
problems. Our currently supported benchmarks are:

Diabetic Retinopathy Diagnosis (in alpha , following Leibig et al.)

Deterministic

Monte Carlo Dropout (following Gal and Ghahramani, 2015)

Mean-Field Variational Inference (following Peterson and Anderson, 1987, Wen et al., 2018)
Deep Ensembles (following Lakshminarayanan et al., 2016)

Ensemble MC Dropout (following Smith and Gal, 2018)

Autonomous Vehicle's Scene Segmentation (in pre-alpha , following Mukhoti et al.)
Galaxy Zoo (in pre-alpha , following Walmsley et al.)

Fishyscapes (in pre-alpha , following Blum et al.)
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Challenges in Uncertainty Estimation

* For non convex problem

— Different local
minima correspond
to various solutions

— Local approximations
only capture “local
uncertainty”

— Unknown unknowns

« Solutions: More flexible
approximations?
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and Life-Long learning

Impact: Many learning-algorithms with a
common set of principles.
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Continual Life-Long Learning

Deep
Learning

T\

-t ]
> 3 =
- 4 f |
& " J

Update Deep

Select a random Network

subset of images

L i
(] "
] ]
{ "
'
( L)

7

1. Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017)
2. Parisi et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)



Continual Life-Long Learning

T\

Deep
Learning

Observe
categories
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subset of images
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Continual Learning: past classes never revisited
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1. Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017)
2. Parisi et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)
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Life-Long Learning with Bayes

p(D110)p(0)
fp(D1 0)p(0)do

p(0|D1) =
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PP = b 0)p(0)d8




Life-Long Learning with Bayes

p(D110)p(0)
fp(D1 0)p(0)do
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Life-Long Learning with Bayes

p(D110)p(0)

POIDY) = D 16)p(6)d0

Set the prior to the previous
posterior and recompute:

p(D2|0)p(0|D1)

PO ) = 10Yp (0D )6
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Life-Long Learning with Bayes

p(D110)p(0)
fp(D1 0)p(0)do

p(e\pl) —

Set the prior to the previous
posterior and recompute:

p(D2|0)p(0|D1)

PO ) = 10Yp (0D )6

68



Life-Long Learning with Bayes

160 o, . o p(Dﬂ@)p(@)
%@% | PP = oD 0)p(0)d0

Set the prior to the previous
posterior and recompute:

_ p(D2|0)p(0|D1)
| p(D2|0)p(8D1)db

Computationally challenging. Approximations do
not work well.This is an open problem!

p(‘ﬂDZa Dl)
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A Key ldea for Life-Long Learning:
Posterior Approx in the Function-Space
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A Key ldea for Life-Long Learning:
Posterior Approx in the Function-Space

Change the network weights to match the network
output (function) at Data 1 while classifying Data 2
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Life-Long Learning with Bayesian
Principles

Connect the weight and function spaces.

— Cheap algorithms to train in the weight space while
regularizing in the function space.

Background

— Linear models and Gaussian Process (GP)

— Neural Nets and GPs (requires infinite-width nets)
DNN2GP

— Convert trained finite-widths nets to GPs

— Convert the iterates of DL algorithms to GPs
Applications to Continual Learning
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Linear model and GPs

Gaussian prior on weights induces GP prior on functions

Chapter 2 in Rasmussen and Williams, Gaussian processes for Machine Learning, 2006
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Gaussian prior on weights induces GP prior on functions
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Linear model and GPs

Gaussian prior on weights induces GP prior on functions
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Linear model and GPs

Gaussian prior on weights induces GP prior on functions

W o J\I (o ) I) “ %@ﬁwg .)t(x) ~ G?( ,,fw) %>)
me}(’é’z on J méan Kevine L

-

A Y2 = (X>TW M
U/ ? ﬁ

Gaussian posterior on w induces a GP posterior on f

Chapter 2 in Rasmussen and Williams, Gaussian processes for Machine Learning, 2006

71



Linear model and GPs

Gaussian prior on weights induces GP prior on functions
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Linear model and GPs

Gaussian prior on weights induces GP prior on functions
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Gaussian posterior on w induces a GP posterior on f
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Deep Networks and GPs

Gaussian prior on weights induces GP prior on functions

Lee et al., Deep Neural Networks as Gaussian Processes, ICLR 2018 (and many more...)



Deep Networks and GPs

Gaussian prior on weights induces GP prior on functions
DNN
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Deep Networks and GPs

Gaussian prior on weights induces GP prior on functions
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Lee et al., Deep Neural Networks as Gaussian Processes, ICLR 2018 (and many more...)
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Deep Networks and GPs

Gaussian prior on weights induces GP prior on functions
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Q: Does this hold at finite width? And for posteriors?

Lee et al., Deep Neural Networks as Gaussian Processes, ICLR 2018 (and many more...)
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Deep Networks and GPs

Gaussian prior on weights induces GP prior on functions
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DNN2GP for regression

Using DNN2GP, we can convert a trained network into GP

p )
. y,
W o \N( * 'F(*) v GF( JCW*CX> ) :l;»;,:(’<> 2‘7" J'-?t()())

iVl

Khan et al., Approximate Inference Turns Deep Networks into Gaussian Processes, NeurlPS, 2019 73



DNN2GP for regression

Using DNN2GP, we can convert a trained network into GP
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DNN2GP for regression

Using DNN2GP, we can convert a trained network into GP
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DNN2GP Generalization

This generalizes to twice differentiable loss and priors
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Deep Learning as GP inference

lterations of algorithms too can be written as GP inference
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Deep Learning as GP inference

lterations of algorithms too can be written as GP inference
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Deep Learning as GP inference

lterations of algorithms too can be written as GP inference
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Deep Learning as GP inference

lterations of algorithms too can be written as GP inference
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Outline of the derivation
DNN

Khan et al., Approximate Inference Turns Deep Networks into Gaussian Processes, NeurlPS, 2019
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Outline of the derivation
DNN Posterior Approx.

Khan et al., Approximate Inference Turns Deep Networks into Gaussian Processes, NeurlPS, 2019
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Outline of the derivation

Posterior Approx.
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Outline of the derivation

Posterior Approx.
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP

Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, ArXiv 2020
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|dentify, memorize, and regularize the past
obtained using DNN2GP

Task 1
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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Memorable Past

Which examples are most relevant for the
classifier? Red circle vs Blue circle.
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Model view vs Data view

DNN2GP provides a measure of relevance
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Model view vs Data view

DNN2GP provides a measure of relevance
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Model view vs Data view

DNN2GP provides a measure of relevance
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Functional Regularization of
Memorable Past (FROMP)

|dentify, memorize, and regularize the past
obtained using DNN2GP
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(Some) Regularization-based
Continual Learning Methods

Elastic-weight consolidation (EWC) [1]
— Based on a diagonal Laplace approximation
— [2] considers structured Laplace

Synaptic Intelligence (SI) [3]

Variational Continual learning (VCL) [4]
— Based on variational inference

Functional Regularization [5]

* With better approximations, we expect the accuracy to
improve, but unfortunately we don’t see this!

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017).

2. Ritter et al. "Online structured laplace ... for overcoming catastrophic forgetting." NeurlPs. 2018.

3. Zenke et al. "Continual learning through synaptic intelligence." ICML, 2017.

4. Nguyen et al. "Variational continual learning." arXiv preprint arXiv:1710.10628 (2017).

5. Titsias et al. "Functional Regularisation for Continual Learning with Gaussian Processes." ICLR (2019). ¢



FROMP improves over EWC!
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Challenges in Life-Long Learning

* Computing exact posterior is not tractable
* Approximations do not always behave the way
we want them to

— They can miss important information from the past
and lead to forgetting

* Working with the function space is one solution.
* There are plenty of non-Bayesian solutions, but

my personal (biased) opinion is that they are in
fact related to Bayesian principles




Active Deep Learning

Select “Important” examples while training with Adam

Epoch 0
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Active Deep Learning

Select “Important” examples while training with Adam
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty estimation and life-long learning

Impact: Many learning-algorithms with a
common set of principles.



Open Challenges
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* How to achieve Life-long deep learning?
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Open Challenges

* How to achieve Life-long deep learning?
* How to compute better posterior approx?
* How to compute higher-order gradients?



Towards Life-Long Learning

1. Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)
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Towards Life-Long Learning

* Three questions
— Q1: What do we know? (model)
— Q2: What do we not know? (uncertainty)
— Q3: What do we need to know? (action & exploration)

1. Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)



Towards Life-Long Learning

* Three questions

— Q1: What do we know? (model)

— Q2: What do we not know? (uncertainty)

— Q3: What do we need to know? (action & exploration)
» Posterior approximation is a key element

— Models == representation of the world

— Approximations == representation of the model

— Improve the model through actions collect more data
(act to appropriately “fill” the data space)

1. Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)



Learning-Algorithms from
Bayesian Principles

Coming soon!
A preliminary version is at

https://emtiyaz.qgithub.io/papers/
learning_from_bayes.pdf

Havard Rue (KAUST)
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