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Continual Learning:
Lifelong and incremental

Quickly adapt to new situations by exploiting
(and preserving) the past knowledge

1. https://sites.google.com/view/cl-theory-icml2021/home
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Adaptation in Machine Learning

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Adaptation in Machine Learning

* Changes in the training frameworks [1,2]
— New data are regularly pooled and labeled
— Old data become irrelevant
— Regular hyperparameter tuning to handle drifts
— Model class/architectures needs an update

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Adaptation in Machine Learning

* Changes in the training frameworks [1,2]
— New data are regularly pooled and labeled
— Old data become irrelevant
— Regular hyperparameter tuning to handle drifts
— Model class/architectures needs an update
* Constant retraining, retesting, redeployment

— Huge financial and environmental costs (e.g.,
Tesla Al DataEngine takes 70000 GPU hrs [3])

1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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Failure of Al in “dynamic” setting

Microsoft’s chatbot “Tay Tweets” went crazy
only after 24 hours of “learning”
from the other people’s tweets (2016)

Brighton E. Whytock (. brightonus 2
~ @TayandYou yes or no, is Ted Cruz the Zodiac Killer.

;‘ TquWeets ¥ 2+ Follow

D briahtonus33 sum ppl sav this... disaaree.
ted cruz would never have been satisfied with

destroying the lives of only 5 innocent people

64 82 REEEaEEAN




Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o
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Failure of Al in “dynamic” setting

Robots need quick adaptation to be deployed
(for example, at homes for elderly care)

https://www.youtube.com/watch?v=TxobtWAFh80o
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This Talk

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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This Talk

* Adaptation mechanisms that are
— Quick (avoid full retraining)
— Accurate (performance similar to retraining)
— Wide (works for variety of tasks and models)

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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This Talk

* Adaptation mechanisms that are
— Quick (avoid full retraining)
— Accurate (performance similar to retraining)
— Wide (works for variety of tasks and models)
* Knowledge-Adaptation priors (K-priors) [1]
— Principle: reconstruct the gradient of the “past”

— Unify & generalize many adaptation strategies
(weight priors, knowledge distillation, similarity
control, SVMs, GPs, and memory-based CL)

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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Knowledge-Adaptation Priors

Mahammad Emtiyaz Khan™ Siddharth Swaraop*
RIKEN Center for Al Project University of Cambridge
Tokyo, Japan Cambnidge, UK
emtiyaz.khan@riken. jp 522163QAcam.ac.uk
Ahstract

Humans and animals have a natural ability o guickly adapt (o their surroundings,
but machine-learning models, when subjected to changes, often require a complete
retraining from scratch. We present Knowledge-adaptation priors (K-priors) to
reduce the cost of retraining by enabling quick and accurate adaptation for a wide-
variety of tasks and models. This is made possible by a combination of weight and
function-space priors to reconstruct the gradients of the past, which recovers and
generalizes many existing, but seemingly-unrelated, adaptation strategies. Training
with simple first-order gradient methods can often recover the exact retrained model
to an arbitrary accuracy by choosing a sufficiently large memory of the past darta.
I'mpirical results confirm that the adaptation can be cheap and accurarte, and a
promising alternative to retraining.

Joint work with Siddharth Swaroop
University of Cambridge, UK

1. Khan and Swaroop. Knowledge-Adaptation Priors, arXiv, 2021 (https://arxiv.org/abs/2106.08769)
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Adaptation Tasks

Given a base model w: trained on data [, adapt it to
“incremental” changes in the training framework
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Adaptation Tasks

Given a base model w: trained on data [, adapt it to
“incremental” changes in the training framework

Change modelffv or architecture
—l(w)+  G(w)+ ) li(w) + R(w) —R(w) + G(w)

Delete data Add data €D Change regularizer or
hyperparameter

11



Speeding up K-fold Cross-Validation

Every run in CV can be “quickly adapted” using the
model trained in the previous run [1]

C

A B D
.
I .
I .
L1 ] |

1. Wen et al. Improving efficiency of SVM k-fold cross-validation by alpha seeding. AAAI, 2017.
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Every run in CV can be “quickly adapted” using the
model trained in the previous run [1]

A B C D

O T T 1 e

Add partition A,
Delete partition B,

‘ ‘ ‘ ‘ ‘ — change hyperparameters.

1. Wen et al. Improving efficiency of SVM k-fold cross-validation by alpha seeding. AAAI, 2017.
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Every run in CV can be “quickly adapted” using the
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|
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Speeding up K-fold Cross-Validation

Every run in CV can be “quickly adapted” using the
model trained in the previous run [1]

A B C D

O T T 1 e

Add partition A,
Delete partition B,

change hyperparameters.
I O I =

Add partition B,
Delete partition C,

‘ ‘ ‘ ‘ ‘ «— Change hyperparameters.

m— \
Add partition C,
«— Delete partition D,

Change hyperparameters.
1. Wen et al. Improving efficiency of SVM k-fold cross-validation by alpha seeding. AAAI, 2017.
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Given a base model w: trained on data [, adapt it to
“incremental” changes in the training framework
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Delete data Add data €D Change regularizer or
hyperparameter
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Adaptation Tasks

Given a base model w: trained on data [, adapt it to
“incremental” changes in the training framework

Change modelffv or architecture

()t (W) SRk —R (1) + G(w)

Delete data Add data €D Change regularizer or
(w — W*)TG(W*)(W — W) hyperparameter

Weight-priors
G is Hessian/Fisher [1],
Quick, but not wide/accurate

Adaptation mechanisms that are accurate, quick,
work for all these tasks, and for generic model f,,..

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017. 13



Inaccuracy of Weight-Priors

M

~
“~

base model—

~

Sy

~

~

~

‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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Inaccuracy of Weight-Priors

New data

1 ‘Add Data’ task.

Binary
classification with

base model—.~\ ~

W,\ y Logistic regression
it~ (Zero offset, ie,
‘Ff}f\ }"fr>_A .
o FuLiesy o decision boundary
batch training UTGEDE pass through the
R Y i A . .
origin).
~ gin)
~ «_ [Fachtask N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.



Inaccuracy of Weight-Priors

base model—

batch training

New data Weight-prior (bad)
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‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
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Inaccuracy of Weight-Priors

New data Weight-prior (bad)

‘Add Data’ task.

Binary
classification with
Logistic regression
(Zero offset, ie,
decision boundary
pass through the
origin).

base model> ~

batch training

Each task N=500,
each class 250
examples.

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.



Knowledge-Adaptation Priors

K-priors use
past-memory
A (size M) in
addition to the
base model.

Weight-prior (bad)

base model— ~

batch training
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Knowledge-Adaptation Priors

K-priors use
past-memory
M (size M) in
addition to the
base model.

- Weight-prior (bad)

- _
pase model— ~ Doggy.  K-prior

batch training

15



A General Principle of Adaptation

K-priors K(w; ws, /) use wx and A
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A General Principle of Adaptation

K-priors K(w; ws, /) use wx and A

(w4 (W) + St Rk R (w) + G(w)

'€ K(w; wa, M)

The principle is to choose K(w) and memory  s.t.
the “gradient of the past” is faithfully reconstructed.

VK (w) ~ V [ > bw) + R(w)}



K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space

K(w) = 7Dy (wl|w,) + D (f(w)]|f(w-))



K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space
K(w) = 7Dy (wllwy) + Dy (f(w)||f(w.))
} N
Candidate - r1 1 T r1 7
w W
~, 2 2
~ w W
~ 3 3
pase model w W
w | | fa.
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K-prior Construction

Combine weight and function-space divergences

Weight-space Function-space
K(w) = 7Dy (wllwy) + Dy (f(w)||f(w.))
} N
Candidate - r1 1 T r1 7
W W 4
~, 2 2
“~ w W
~ 3 3
pase model w W
w | | fa.
No labels required,
- so ./ can include

any inputs!

17



Faithful Gradient Reconstruction

M=0 _ _ True grds (black)
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Faithful Gradient Reconstruction

M=1 True grds (black) vs K-pricr [red)
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Faithful Gradient Reconstruction

M=0 True grads (black) ve K-priar (red)

No labels required, so . can include any inputs!
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w

l(w) = U(yi,o(fl)) +8]lw|?
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w

_ Zé(yqz,ﬁ(fi)) + 3w

1€D Funct1on space Weight-space

Memory all past data
The K- prlor recovers the exact gradients!

(\V)
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w

_ Zé(yqz,ﬁ(fi)) + 3w

1€D Funct1on space Weight-space

Memory all past data
The K- prlor recovers the exact gradients!

(\V)

=Y ¢i(o(f) —o(f.)) + 0(w—w.)
1€D —y T
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w
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Exact Gradient Reconstruction

Consider logistic regression f = ¢.'w

_ Zf(yqz,ﬁ(fi)) + 3w

1€D Funct1on space Weight-space
Ze w)) + 0w —w.|?

Memory all past data
The K- prlor recovers the exact gradients!

quz v) = o(fi)) +0(w—w.)
1€D —y+y
1€D 1€D

Vi(w) Vi(w,) =0
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How to Choose Memory?

Memory should contain points where the (unknown)
future and past models disagree the most

Viw) = VKw) = Y ¢i(o(fi) —o(fi.))

€D\ M Prediction disagreement

~ | Y oo (fa)el |(w - w.)

1€ D\M 2nd derivativeojfthe loss

Generalized Gauss-Newton (GGN)

Independent of w

Pick points to minimize the GGN approximations.
We can use any low-rank approximation. We pick
top-M 6'(f,,.) which is called memorable past [1].

1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.




Memorable Past: Example

base model \ ~

batch training
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1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.



Least Memorable Most Memorable

1. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.



Existing Work

K-priors unify many seemingly unrelated existing
work, and provide speed-accuracy trade-oft

Wide

Weight priors [1]

SVMs [2]

Knowledge Distillation [3]

Learning under privileged info [4]

Gaussian Process [5]
Memory-based CL [6]

XX XX XX

1. Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.

2. Cauwenberghs and Poggio. Incremental and decremental SVM learning. NeurlPS, 2001.

3. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.

4. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.
5. Csat6 and Opper. Sparse on-line Gaussian processes. Neural computation, 2002.

6. Pan et al. Continual deep learning by functional regularisation of memorable past. NeurlPS, 2020.
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Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.

=2 _Viu(o(fu) =) = D Viur.
1€D 1€D |
Residuals f,, — y;

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.



Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.

= > Viuo(f) —y) =D _ Vi,
1€D 1€D |
Residuals f,, — y;
“Avoid past mistakes
of the teacher”.
Very similar to using
“slack” in SVM [2] to
Improve student’s
learning.

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015.
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.



Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.
VE(w) =Y Vfu(o(fi)—y) =Y Vi
i€D i€D
Residuals [, — .

“Avoid past mistakes Teacher’s mistakes
” provided to the student
of the teacher”.

3
Very similar to using

“slack” in SVM [2] to °

Improve student’s 5

learning. ® i
Teoche s

1. Hinton et al. Distilling the knowledge in a neural network, arXiv, 2015’.\‘5h|«5
2. Vapnik and Izmailov. Learning using privileged information: similarity control and .... JMLR, 2015.



Knowledge Distillation (KD)

K-priors with no weight-div and temperature set to
1, gives us KD. Gradients are not exact now.
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) provided to the student simpler problem
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“slack” in SVM [2] to
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learning. ® 7
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Results

K-priors need < 2% of past data to match “batch”.

Validation acc (%)
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Add new data

s Batch
== Replay
={ = K-prior

2

5

10 20 50 100

Memory size (% of past data)

The results are on
USPS binary
classification with
Neural nets.

“Replay” uses the
same memory but
with true outputs.

27



100

(o))
o

Validation acc (%)
-I> (@)
Q o

N
o

=
o
o

(0]
o

Validation acc (%)
ey (@)
o o

N
o

Results

Add new data

I Batch
== Replay
={ = K-prior

Change Hegularizer
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Remove old data

Change architecture
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Memory size (% of past data)

K-priors only need
about 2-5% of the
past data to match
retraining on full
batch.

The results are on
USPS binary
classification with
Neural nets.
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Future Directions

* The general principle of adaptation in K-priors is to faithfully
reconstruct “past gradients”
* This is an instance of a more general Bayesian principle to reconstruct
“past natural parameters” of the posterior approx.
— K-prior is a first-order approx. (Gaussian with unknown mean)

— Extend with posteriors with higher-order sufficient statistics
(Gaussian with unknown covariance)
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Future Directions

* Another challenge is what to store and how much memory to allocate
— Inherent trade-off between speed and accuracy
— We “have” to reasonable assumptions about the future
— The “dual space” of the “divergence” plays a key role

* We are developing “dual representations” are used for Knowledge
representation, transfer, and collection

— A new paper on “memorable past” coming soon
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Approximate Inference Turns Deep Networks into Continual Deep Learning by Functional Regularisation
Gaussian Processes of Memorable Past

Pinghn Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E.
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