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Human Learning at 
the age of 6 months.
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Converged at the 
age of 12 months
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Transfer 
skills

at the age 
of 14 

months



Current state of ML

5https://www.youtube.com/watch?v=TxobtWAFh8o The video is from 2017

https://www.youtube.com/watch?v=TxobtWAFh8o


Fixing Machine Learning

• Even a small change may need full retraining
– Huge amount of resources only few can afford 

(costly & unsustainable) [1,2, 3]
– Difficult to apply in “dynamic” settings (robotics, 

epidemiology, climate science etc)
• We need sustainable, transparent, trustworthy AI

– Use reliable building blocks (data, model, metrics) 
– Switch to incremental, continual, lifelong learning

• The Bayesian Learning Rule as a solution to do so!
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1. Diethe et al. Continual learning in practice, arXiv, 2019.
2. Paleyes et al. Challenges in deploying machine learning: a survey of case studies, arXiv, 2021.
3. https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s

https://www.youtube.com/watch?v=hx7BXih7zx8&t=897s
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BayesStandard

1. Foong and Holmes, On the marginal likelihood and cross-validation (2019)

log Partition = ∑
all S

Leave-S-Out-CV
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Image
Segmentation

Uncertainty
(how much
the models
differ from 
each other)

(By Roman Bachmann)
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Learning Algorithms are Bayesian (Learning Rule, BLR) 
Table 1: A summary of learning algorithms derived from the BLR. Each algorithm is derived through
specific approximations of the posterior and natural-gradient. New algorithms are marked with “(New)”.
Abbreviations: cov. ! covariance, STE ! Straight-Through-Estimator, VI ! Variational Inference,
VMP ! Variational Message Passing.

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.

Optimization Algorithms

Gradient Descent Gaussian (fixed cov.) Delta method 1.3

Newton’s method Gaussian —–“—– 1.3

Multimodal optimization (New) Mixture of Gaussians —–“—– 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

4.2

Dropout Mixture of Gaussians Delta method, stochastic approx.,
responsibility approx.

4.3

STE Bernoulli Delta method, stochastic approx. 4.5

Online Gauss-Newton (OGN)
(New)

Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in
Adam & no square-root scaling

4.4

Variational OGN (New) —–“—– Remove delta method from OGN 4.4

BayesBiNN (New) Bernoulli Remove delta method from STE 4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes Exp-family Set learning rate ⇢t = 1 5.1

Laplace’s method Gaussian Delta method 4.4

Expectation-Maximization Exp-Family + Gaussian Delta method for the parameters 5.2

Stochastic VI (SVI) Exp-family (mean-field) Stochastic approx., local ⇢t = 1 5.3

VMP —–“—– ⇢t = 1 for all nodes 5.3

Non-Conjugate VMP —–“—– —–“—– 5.3

Non-Conjugate VI (New) Mixture of Exp-family None 5.4

2.1 Bayesian learning rule as natural-gradient descent

Given the objective L(�) = Eq[¯̀(✓)+log q(✓)] in Eq. 2, the classical gradient-descent algorithm performs
the following update:

�t+1  �t � ⇢tr�L(�t). (15)
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1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).



The Bayesian Learning Rule
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1. Khan and Rue, The Bayesian Learning Rule, JMLR, 2023
2. Khan and Lin. "Conjugate-computation variational inference….” AIstats, 2017

<latexit sha1_base64="/+t3q4v2VzqDXbxQIVNEyo2KDJY=">AAACBnicbVDJSgNBEO2Je9xGPYrQGATFEGZE1JMIXjxGMAtkQujp1CRNenqG7hohBE968Fe8eFDEgxe/wZt/Y2c5uD0oeLxXRVW9MJXCoOd9Ormp6ZnZufmF/OLS8sqqu7ZeNUmmOVR4IhNdD5kBKRRUUKCEeqqBxaGEWtg7H/q1a9BGJOoK+yk0Y9ZRIhKcoZVa7lYQC9UKsAvIaFAMijQAKXfHwl7LLXglbwT6l/gTUjg7enu9i/Yfyy33I2gnPItBIZfMmIbvpdgcMI2CS7jJB5mBlPEe60DDUsViMM3B6I0bumOVNo0SbUshHanfJwYsNqYfh7YzZtg1v72h+J/XyDA6aQ6ESjMExceLokxSTOgwE9oWGjjKviWMa2FvpbzLNONok8vbEPzfL/8l1YOSf1Q6vLRpnJIx5skm2Sa7xCfH5IxckDKpEE5uyQN5Is/OvfPovDiv49acM5nZID/gvH8BjDWblg==</latexit>

min
✓

`(✓)

Posterior approximation (expo-family)

vs
<latexit sha1_base64="UkFJd0xRqpskZtwvNLoMDEb+DAw=">AAACX3icbVFdSxwxFM2Mter6NepT6UuoCCvYZaZQFR/EUgqF9kGhq8JmGDLZu24wk5lN7ghLnP/l32jfCr70nzS7a2nVXgice865Nzc3eaWkxTj+GYRzL+ZfLiwutZZXVtfWo43Nc1vWRkBXlKo0lzm3oKSGLkpUcFkZ4EWu4CK//jjRL27AWFnqbziuIC34lZYDKTh6KotuWCF15kaUSU0dmzZ0BvoNZQXHoeDKnTWNz/bY3ozKc/epydwj76jNcAjId72zx0CpP3lK3/5t9OVr0x7d3lZZvJtF23EnngZ9DpIHsH1y9L0V3n3YOc2iH6xfiroAjUJxa3tJXGHquEEpFDQtVluouLjmV9DzUPMCbOqmIzZ0xzN9OiiNPxrplP23wvHC2nGRe+dkVvtUm5D/03o1Dg5TJ3VVI2gxu2hQK4olnSyb9qUBgWrsARdG+lmpGHLDBfovafklJE+f/Bycv+sk+533Z34bx2QWi+Q1eUPaJCEH5IR8JqekSwS5D8JgOVgJfoUL4VoYzaxh8FCzRR5F+Oo3+Va4rA==</latexit>

min
q2Q

Eq(✓)[`(✓)]�KL(q||p0)

Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural parameters of q
<latexit sha1_base64="YEPX7wTMNtBzjZ+ZURxOVJ6uc54="></latexit>

� �� ⇢F (�)�1r�

n
Eq[`(✓)]�KL(q||p0)

o

Posterior approximation q and the Bayesian learning rule open a new 
way to fix and improve many aspects of deep learning.



Better Performance (on GPT-2)
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Better predictions & uncertainty at the same cost [2]

Trained on OpenWebText 
data (49.2B tokens).

On 773M, we get a gain of 
0.5 in perplexity.

On 355M, we get a gain of 
0.4 in perplexity.

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
2. Shen et al. “Variational Learning is Effective for Large Deep Networks.” Under review (2024)

BLR (IVON)[3]



Comparison to Adam
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RMSprop/Adam BLR [1] variant called IVON [5]
(Improved Variational Online Newton)

<latexit sha1_base64="6cqgdMpwEvsCUhlzFD20sqy/oaU=">AAACt3icbVFNj9MwEHXC11K+Chy5jKhAqdCWZFW+bitx4bhIdHdFXaqJ49TWOnHWdkBVlL/IgRv/BidtJbq7I1l6eu/N83icVkpaF8d/g/DW7Tt37x3cHzx4+Ojxk+HTZ6dW14bxGdNKm/MULVey5DMnneLnleFYpIqfpRefO/3sJzdW6vKbW1d8UeCqlLlk6Dy1HP6mAl2zauE1VTx3aIz+BT1HS0wVtkC5UhF1gjscUzroNX GDf9X+OAJvEHtSlBxSI/QYBLyBDsEuoMvqU/ejNtQhUFSVQIBol971Z1x5sYDxW4iovTR90I7vplsOR/Ek7guug2QLRmRbJ8vhH5ppVhe8dEyhtfMkrtyiQeMkU7wd0NryCtkFrvjcwxILbhdNv/cWXnkmg1wbf0oHPft/R4OFtesi9c4CnbBXtY68SZvXLv+4aGRZ1Y6XbHNRXitwGrpPhEwazpxae4DMSD8rMIEGmfNf3S0hufrk6+D0aJK8n7z7Oh0dT7frOCAvyEsSkYR8IMfkCzkhM8KCafA9YEEWfgqXYR6KjTUMtj3PyV6Fl/8ARwHSgg==</latexit>

ĝ  r̂`(✓)
ĥ ĝ2

h (1� ⇢)h+ ⇢ĥ

✓  ✓ � ↵(ĝ + �m)/(
p
h+ �)

1. Khan and Rue, The Bayesian Learning Rule, JMLR (2023).
2. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
3. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).
4. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
5. Shen et al. “Variational Learning is Effective for Large Deep Networks.” Under review (2024)

Only tune initial value of h (a scalar)
Check out the blog: https://team-approx-bayes.github.io/blog/ivon/

<latexit sha1_base64="lMR1EEq84mMqe3ZqmU42lhTl4A0="></latexit>

ĝ  r̂`(✓) where ✓ ⇠ N (m,�2)

ĥ ĝ · (✓ �m)/�2

h (1� ⇢)h+ ⇢ĥ +⇢2(h� ĥ)2/(2(h+ �))

m m� ↵(ĝ + �m)/(h+ �)
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Drop-in replacement of Adam

15

https://github.com/team-approx-bayes/ivon



IVON [3] got 1st prize in NeurIPS 2021 
Approximate Inference Challenge
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Watch Thomas Moellenhoff’s talk at 
https://www.youtube.com/watch?v=LQInlN5EU7E.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).



GPT-2 with Bayes
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Better performance and uncertainty at the same cost

Trained on OpenWebText 
data (49.2B tokens).

On 773M, we get a gain of 
0.5 in perplexity.

On 355M, we get a gain of 
0.4 in perplexity.

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).
3. Shen et al. “Variational Learning is effective for large neural networks.” (Under review)

BLR (IVON)[3]



GPT-2 with Bayes
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Posterior averaging improve the result. Can also train 
on low-precision (a stable optimizer)

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurIPS (2019).
3. Shen et al. “Variational Learning is effective for large neural networks.” (Under review)
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Variational Learning is Effective for Large Deep Networks

(a) (b)

Figure 12: IVON results trained on multi-GPU setups with different random seed on each machine (left) and validation
perplexity for GPT-2 trained with IVON evaluated at mean and posterior predictive on OpenWebText (right).

evaluate this empirically by training ResNet-20 on CIFAR10 with a varying number of MC samples. We find in Fig. 10(c)
that using multiple samples improves both accuracy and uncertainty over using just one sample.
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Variational Learning is Effective for Large Deep Networks

(a) (b)

Figure 12: IVON results trained on multi-GPU setups with different random seed on each machine (left) and validation
perplexity for GPT-2 trained with IVON evaluated at mean and posterior predictive on OpenWebText (right).

evaluate this empirically by training ResNet-20 on CIFAR10 with a varying number of MC samples. We find in Fig. 10(c)
that using multiple samples improves both accuracy and uncertainty over using just one sample.

24



Better Calibration
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2% better accuracy over AdamW and 1% over 
SGD. Better calibration (ECE of 0.022 vs 0.066)
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Variational Learning is Effective for Large Deep Networks

(a) GPT-2 on OpenWebText (b) ResNet-50 on ImageNet (c) Calibration on ImageNet

Figure 1: First two panels show that IVON closely matches the trajectory of AdamW (Loshchilov & Hutter, 2017) for
training GPT-2 on OpenWebText and ResNet-50 on ImageNet. The third panel shows that the predictions are also better
calibrated (comparisons to SGD on ImageNet are in Table 1). Final numbers for IVON vs AdamW are as follows: 12.5 vs.
13.0 perplexity (lower is better) on GPT-2 (773M), 14.1 vs 14.5 perplexity on GPT-2 (355M), 17.9 vs 18.1 perplexity on
GPT-2 (125M), 77.5 vs 75.2 accuracy and 0.022 vs 0.066 ECE (lower is better) on ResNet-50.

2. Challenges of Variational Learning for
Large Deep Networks

Variational learning is challenging for large deep networks
due to fundamental differences in its objective to those com-
monly used in deep learning. Deep learning methods esti-
mate networks weights ✓ 2 RP by minimizing empirical
risk ¯̀(✓) =

PN
i=1 `i(✓)/N , which is an average over indi-

vidual losses `i(✓) for N examples. In contrast, variational
methods estimate a distribution q(✓) over weights by mini-
mizing a variational objective

L(q) = �Eq(✓)

⇥
¯̀(✓)

⇤
+ DKL(q(✓) k p(✓)), (1)

where p(✓) is the prior and � > 0 is a scaling parameter
(similar to temperature), useful to handle model misspecifi-
cation. The above coincides with variational inference when
¯̀ is a valid likelihood function, but to include other cases
we use the boarder framework of variational learning.

Optimization of L(q) is fundamentally different from that
of ¯̀(✓). For instance, the number of parameters of q can
be much larger than the size of ✓, making the problem
harder. The number of parameters of q is doubled for a
diagonal-covariance Gaussian q(✓) = N (✓ |m, diag(�)2)
due to the estimation of two vectors of mean m 2 RP and
standard deviation � 2 RP , respectively. The optimization
is further complicated because of the expectation in Eq. 1,
which is often dealt with by stochastic approximation which
adds additional noise during the optimization.

Due to these differences, a direct optimization of Eq. 1
remains challenging. The standard approach is to optimize
it by using a standard deep learning method, say, SGD,

m m� ⇢brmL �  � � ⇢br�L,
where ⇢ > 0 is the learning rate. This showed promising re-
sults in the early age of deep learning with several different

stochastic gradients estimators br (Graves, 2011; Blundell
et al., 2015). Unfortunately, these methods have been unable
to keep up with the growth in the scale of deep learning.
The lack of progress has been attributed to various causes,
such as high-variance in stochastic gradients (Kingma et al.,
2015; Wen et al., 2018), issues with the temperature pa-
rameter (Wenzel et al., 2020; Noci et al., 2021), and lack
of a good prior (Fortuin et al., 2022). Multiple thereoti-
cal studies have raised doubts whether variational learning
can ever work at all (Trippe & Turner, 2017; Foong et al.,
2020; Coker et al., 2022). Altogether, these have led to a
belief regarding an inherent trade-off between accuracy and
uncertainty in Bayesian learning.

Progress in variational learning has been made on a differ-
ent front by using natural-gradient methods (Sato, 2001;
Hoffman et al., 2013; Khan & Lin, 2017) which have shown
promising results on ImageNet (Zhang et al., 2018; Osawa
et al., 2019). Their updates resemble an Adam-like form
which makes it easy to tune them at large scale. Despite
this, the implementation can be tricky and cost can be much
higher than Adam. For example, Osawa et al. (2019) build
upon the Variational Online Newton (VON) method of Khan
et al. (2018) where they replace the Hessian computation by
a Gauss-Newton estimate. They implement an Adam-like
update with a prior p(✓) = N (✓ | 0, I/s0), as shown below:

bh 1

|B|
X

i2B
r`i(✓)2, where ✓ ⇠ q(✓),

g �1g + br¯̀(✓) + s0m/�,

h �2h+ (1� �2)bh,
m m� ↵tg/(h+ c),

�  1/
p

�(h+ c).

(2)

The difficult computation is in the first line where the Gauss-

2
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Variational Learning is Effective for Large Deep Networks

(a) GPT-2 on OpenWebText (b) ResNet-50 on ImageNet (c) Calibration on ImageNet

Figure 1: First two panels show that IVON closely matches the trajectory of AdamW (Loshchilov & Hutter, 2017) for
training GPT-2 on OpenWebText and ResNet-50 on ImageNet. The third panel shows that the predictions are also better
calibrated (comparisons to SGD on ImageNet are in Table 1). Final numbers for IVON vs AdamW are as follows: 12.5 vs.
13.0 perplexity (lower is better) on GPT-2 (773M), 14.1 vs 14.5 perplexity on GPT-2 (355M), 17.9 vs 18.1 perplexity on
GPT-2 (125M), 77.5 vs 75.2 accuracy and 0.022 vs 0.066 ECE (lower is better) on ResNet-50.

2. Challenges of Variational Learning for
Large Deep Networks

Variational learning is challenging for large deep networks
due to fundamental differences in its objective to those com-
monly used in deep learning. Deep learning methods esti-
mate networks weights ✓ 2 RP by minimizing empirical
risk ¯̀(✓) =

PN
i=1 `i(✓)/N , which is an average over indi-

vidual losses `i(✓) for N examples. In contrast, variational
methods estimate a distribution q(✓) over weights by mini-
mizing a variational objective

L(q) = �Eq(✓)

⇥
¯̀(✓)

⇤
+ DKL(q(✓) k p(✓)), (1)

where p(✓) is the prior and � > 0 is a scaling parameter
(similar to temperature), useful to handle model misspecifi-
cation. The above coincides with variational inference when
¯̀ is a valid likelihood function, but to include other cases
we use the boarder framework of variational learning.

Optimization of L(q) is fundamentally different from that
of ¯̀(✓). For instance, the number of parameters of q can
be much larger than the size of ✓, making the problem
harder. The number of parameters of q is doubled for a
diagonal-covariance Gaussian q(✓) = N (✓ |m, diag(�)2)
due to the estimation of two vectors of mean m 2 RP and
standard deviation � 2 RP , respectively. The optimization
is further complicated because of the expectation in Eq. 1,
which is often dealt with by stochastic approximation which
adds additional noise during the optimization.

Due to these differences, a direct optimization of Eq. 1
remains challenging. The standard approach is to optimize
it by using a standard deep learning method, say, SGD,

m m� ⇢brmL �  � � ⇢br�L,
where ⇢ > 0 is the learning rate. This showed promising re-
sults in the early age of deep learning with several different

stochastic gradients estimators br (Graves, 2011; Blundell
et al., 2015). Unfortunately, these methods have been unable
to keep up with the growth in the scale of deep learning.
The lack of progress has been attributed to various causes,
such as high-variance in stochastic gradients (Kingma et al.,
2015; Wen et al., 2018), issues with the temperature pa-
rameter (Wenzel et al., 2020; Noci et al., 2021), and lack
of a good prior (Fortuin et al., 2022). Multiple thereoti-
cal studies have raised doubts whether variational learning
can ever work at all (Trippe & Turner, 2017; Foong et al.,
2020; Coker et al., 2022). Altogether, these have led to a
belief regarding an inherent trade-off between accuracy and
uncertainty in Bayesian learning.

Progress in variational learning has been made on a differ-
ent front by using natural-gradient methods (Sato, 2001;
Hoffman et al., 2013; Khan & Lin, 2017) which have shown
promising results on ImageNet (Zhang et al., 2018; Osawa
et al., 2019). Their updates resemble an Adam-like form
which makes it easy to tune them at large scale. Despite
this, the implementation can be tricky and cost can be much
higher than Adam. For example, Osawa et al. (2019) build
upon the Variational Online Newton (VON) method of Khan
et al. (2018) where they replace the Hessian computation by
a Gauss-Newton estimate. They implement an Adam-like
update with a prior p(✓) = N (✓ | 0, I/s0), as shown below:

bh 1

|B|
X

i2B
r`i(✓)2, where ✓ ⇠ q(✓),

g �1g + br¯̀(✓) + s0m/�,

h �2h+ (1� �2)bh,
m m� ↵tg/(h+ c),
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No Severe Overfitting
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….like AdamW while improving accuracy over SGD 
consistently & better uncertainty
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Variational Learning is Effective for Large Deep Networks

Dataset & Model Epochs Method Top-1 Acc. " Top-5 Acc. " NLL # ECE # Brier #
AdamW 74.56±0.24 92.05±0.17 1.018±0.012 0.043±0.001 0.352±0.003

SGD 76.18±0.09 92.94±0.05 0.928±0.003 0.019±0.001 0.330±0.001

IVON@mean 76.14±0.11 92.83±0.04 0.934±0.002 0.025±0.001 0.330±0.001
100

IVON 76.24±0.09 92.90±0.04 0.925±0.002 0.015±0.001 0.330±0.001

AdamW 75.16±0.14 92.37±0.03 1.018±0.003 0.066±0.002 0.349±0.002

SGD 76.63±0.45 93.21±0.25 0.917±0.026 0.038±0.009 0.326±0.006

IVON@mean 77.30±0.08 93.58±0.05 0.884±0.002 0.035±0.002 0.316±0.001

ImageNet-1k
ResNet-50
(25.6M params)

200

IVON 77.46±0.07 93.68±0.04 0.869±0.002 0.022±0.002 0.315±0.001

AdamW 47.33±0.90 71.54±0.95 6.823±0.235 0.421±0.008 0.913±0.018

SGD 61.39±0.18 82.30±0.22 1.811±0.010 0.138±0.002 0.536±0.002

IVON@mean 62.41±0.15 83.77±0.18 1.776±0.018 0.150±0.005 0.532±0.002

TinyImageNet
ResNet-18
(11M params, wide)

200

IVON 62.68±0.16 84.12±0.24 1.528±0.010 0.019±0.004 0.491±0.001

AdamW 50.65±0.0⇤ 74.94±0.0⇤ 4.487±0.0⇤ 0.357±0.0⇤ 0.812±0.0⇤

AdaHessian 55.03±0.53 78.49±0.34 2.971±0.064 0.272±0.005 0.690±0.008

SGD 59.39±0.50 81.34±0.30 2.040±0.040 0.176±0.006 0.577±0.007

IVON @mean 60.85±0.39 83.89±0.14 1.584±0.009 0.053±0.002 0.514±0.003

TinyImageNet
PreResNet-110
(4M params, deep)

200

IVON 61.25±0.48 84.13±0.17 1.550±0.009 0.049±0.002 0.511±0.003

AdamW 64.12±0.43 86.85±0.51 3.357±0.071 0.278±0.005 0.615±0.008

SGD 74.46±0.17 92.66±0.06 1.083±0.007 0.113±0.001 0.376±0.001

IVON@mean 74.51±0.24 92.74±0.19 1.284±0.013 0.152±0.003 0.399±0.002

CIFAR-100
ResNet-18
(11M params, wide)

200

IVON 75.14±0.34 93.30±0.19 0.912±0.009 0.021±0.003 0.344±0.003

Table 1: IVON improves both accuracy and uncertainty over SGD and AdamW. The performance of AdamW is not very
good on smaller datasets due to overfitting, but IVON does not have this issue.

2. Unlike Lin et al. (2020, Fig. 1), the update of h does
not use � which slightly improves the performance. We
also update h before m which has no impact on the
performance. Also, we do not use any debiasing for h.

3. The Hessian h is initialized with a constant h0, typi-
cally between 0.01 to 1. Lin et al. (2020) do not discuss
this but most likely they set it to 0 due to the diabising
step used in their work. We find the initialization to be
useful; too small values destabilize the training while
larger values may give poor performance.

4. We rescale ↵t by (h0 + �) which makes learning more
robust to initialization. For large transformers, we clip
the preconditioned gradient in line 7.

A pseudocode with multiple GPUs and gradient clipping
is in App. B and a more detailed guide for hyperparameter
setting is in App. C. Momentum �1, learning-rate ↵t and
weight-decay � can be set in the same fashion as for standard
optimizers, as well as minibatch size and clipping radius. �2

typically needs to be closer to one as in Adam, for instance,
values of 1 � 10�5 work well. Setting of h0 and � is also
easy, as discussed above. This makes obtaining good results
with IVON often very easy. We plan to release an open-
source PyTorch code for IVON, part of which is in the
supplementary material to this submission.

4. IVON is Effective for Large Deep Networks
In this section, we show extensive evidence that an effective
variational learning with IVON enables many improvements
to deep learning. In all following experiments, we refer by
’IVON@mean’ to the prediction using m as the weights,
whereas ’IVON’ denotes a model average with 64 samples
drawn from the posterior learned by IVON.

4.1. Better Scalability and Generalization

In the following, we will show that IVON can improve
downstream performance on several tasks and especially
train large-scale models, such as Transformer-based lan-
guage models like GPT-2.

4.1.1. PRETRAINING LANGUAGE MODELS

Pretraining transformer language models (Vaswani et al.,
2017) with variational learning has been challenging. So
far, no results exist that show how such language models
can be trained with variational learning at scale. Here, we
show that this is possible with IVON, which allows us to
train such models effectively from scratch.

We train models following the GPT-2 (Radford et al., 2019)
architecture for 49.2 billion tokens in total on the OpenWeb-
Text corpus (Gokaslan & Cohen, 2019). We use the same
hyperparameters for AdamW as prior work (Liu et al., 2023)
and optimize the hyperparameters for IVON by grid search
on a smaller model. We pretrain models with 125M, 355M
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing. Second, our
functional prior regularises the mean to be close to the past mean, which is lacking in the regulariser
of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable past examples play a
similar role as the inducing inputs, but are much cheaper to obtain (Titsias et al. [34] requires solving
a discrete optimisation problem), and have an intuitive interpretation (see Fig. 1b). Due to these
differences, our method outperforms the method of Titsias et al. [34], which, unlike ours, performs
worse than the weight-regularisation method of Swaroop et al. [33]. We also obtain state-of-the-art
performance on a larger Split CIFAR benchmark, a comparison missing in Titsias et al. [34]. Our
method is also different to Benjamin et al. [5], which lacks a mechanism to automatically weight past
memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.
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Past that has the most influence on the present

Estimating it without retraining: Using the BLR, we can 
recover all sorts of influence criteria used in literature.

Influence = predictError x predictVariance
1. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS, 2023
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1. Cook. Detection of Influential Observations in Linear Regression. Technometrics. ASA 1977
2. Nickl, Xu, Tailor, Moellenhoff, Khan, The memory-perturbation equation, NeurIPS, 2023

Influence ( ) = predictionError *predictionVarianceΔ
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(a) Effect of removing an example.

(b) Predicting test loss during training, CIFAR10 (c) Predicting test loss for leave-one-class-out, FMNIST

Figure 1: Panel (a) illustrates the effect of removing an example during training and the estimation
of the deviation using the current model. Panel (b) shows a faithful estimation of the test NLL
during training of a ResNet–20 on CIFAR10 using the train-LOO estimate by MPE. Panel (c) shows
a faithful estimate of leave-one-class-out test performance for two models fitted on FMNIST. Each
marker corresponds to a model trained by leaving one class shown with the text. The estimated NLL
by using the MPE on the training data correlates well with the test NLL. Some classes are more
sensitive than others, but the importance of the class is consistent among the two models.

the model’s memory; the model is highly sensitive to them and perturbing them can make the model
forget its essential knowledge. The MPE relates the model’s sensitivity to perturbation in such sen-
sitive examples.

We show several applications of the MPE to understand sensitivity of ML models:

1. The MPE, when specialized to Gaussian posteriors, recovers the influence function used in
linear models [4] and deep learning [20]. Moreover, the MPE also applies more widely to
many algorithms in deep learning, optimization, and Bayesian methods.

2. The MPE for Gaussian posteriors has a useful property: examples with high prediction
error and predictions variances are the most influential and the sensitivity is obtained by
simply multiplying the two quantities.

3. The MPE also has a property regarding computations: sensitivity can estimated cheaply
whenever natural-gradients are cheap to compute. This way, already computed quantities
(e.g., error and variance) can be used and no extra computation is needed.

4. We show that the MPE can be used to accurately estimate generalization performance on
image-classification benchmarks. We use leave-one-out measures on training set to accu-
rately predict the test set performance Figs. 1(b) and 1(c). This agrees with other studies
which show effectiveness of sensitivity based approaches for such tasks [12, 6, 10].

2 Understanding Model’s Sensitivity to Data

Understanding model’s sensitivity to the training data is important but is often done by using a
brute-force way of retraining several models. For example, consider parameter ✓ fitted to data
D = {D1, . . . ,DN} by using a loss `i(✓) for the i’th example and a regularizer R(✓),

✓⇤(D) = argmin
✓

L(✓), where L(✓) =
NX

i=1

`i(✓) +R(✓). (1)

If the data is perturbed, for example, the i’th example is removed giving us the perturbed dataset
D/i = {D1, . . . ,Di�1,Di+1, . . . ,DN}, then we can simply retrain the model to get new ✓⇤(D/i).

2
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(a) MLP on USPS-3vs5, |M| = 16 (b) MLP on MNIST, |M| = 64 (c) Class removal on MNIST

Figure 3: Panel (a) and Panel (b) show that the estimated deviation for removal of groups of examples
correlates well with the true deviations. Each point corresponds to a removed group of examples,
the red points show the second approximation in Eq. 18, while the blue squares show the first one. In
Panel (c) we show the estimated test NLL for one-class-leave-out obtained by using Eq. 21 correlates
well with true change in generalization. The models find some classes more sensitive than others.

(a) MNIST

(b) FMNIST

(c) CIFAR-10

(d) Adam (e) Delta method (diag.)

(f) Delta method (KFAC) (g) iBLR

Figure 4: Panel (a), (b) and (c) show that our method can faithfully estimate the LOO-CV curve for
predicting generalization and tuning of the L2-regularization parameter on MNIST, FMNIST and
CIFAR-10. Panel (d), (e), (f) and (g) show that the Train-LOO estimate with MPE can faithfully
estimate the test NLL during training on FMNIST. From panel (d) to (g) the approximation quality
is increasing.

The match is almost perfect here and we do not see such good correlations in other studies [12, 6, 10]
but our result supports their conclusions that sensitivity based measures can work well to predict
generalization performance. The cost of computing these curves is almost negligible compared to
cross-validation where we have train many more models for each setting of the hyperparameter.

How do sensitivities evolve during training: We use the MPE to analyze the evolution of sen-
sitivities during training. We consider Bayesian logistic regression in Fig. 5(a) and neural network
classification with the iBLR optimizer inFig. 5(b), Fig. 5(c) and Fig. 5(d). We run the BLR iter-
ates of Eq. 11. For Bayesian logistic regression we estimate deviations using Eq. 19 (TODO: we
evaluate expression with �0?) and plot them for various iterations. For iBLR we use Eq. 17 and
plot for several selected epochs. For better visualization, we first sort the examples according to

9
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Figure 1: The left panel illustrates our approach. We connect the error � of the merged model ✓merged
to the gradient mismatch over losses ¯̀

t and propose a new method that reduces the mismatch by
using the Hessian Ht and error �t of the individual models ✓t. The right panel shows an example of
adding datasets to RoBERTa trained on IMDB. We clearly see that reducing mismatch also reduces
test error of task arithmetic. We consider 5 datasets, each indicated by a number on the markers.

can leverage them to further improve model merging. Empirical results on LLMs and ViTs show
consistent improvements, both in terms of performance and robustness to hyperparameters.

2 MODEL MERGING BY PARAMETER AVERAGING

We consider merging multiple models that share the same architecture but are trained on different
datasets, for example, by fine-tuning a large pretrained model. We denote each of the T > 1 models
by its parameter vector ✓t 2 Rd. Throughout this section, we will use an LLM, denoted by ✓LLM,
but the results straightforwardly apply to other pretrained models. Given ✓LLM and different ✓t, our
goal is to understand the inaccuracies in existing parameter-averaging methods and improve them.

We focus on the following simple weighted-averaging scheme: ✓̄ = S0 ✓LLM +
PT

t=1 St ✓t, where
✓̄ is the merged model obtained with scaling matrices St 2 Rd⇥d for t = 0, 1, . . . , T . Since the
dimension d is often large, simple choices of St are used in practice. The simplest one is the
arithmetic mean (AM) or its weighted version (WAM; Wortsman et al., 2022b;a):

✓̄AM =
1

T

TX

t=1

✓t, ✓̄WAM = ↵0✓LLM +
TX

t=1

↵t✓t, (1)

where ↵t � 0. For large models, different parameters have different scaling and it is better to take
this into account, for example, by using the Fisher matrix Ft:

✓̄FA =
TX

t=1

St✓t, where St = ↵tF̄
�1

Ft with F̄ =
TX

t=1

↵tFt, for all t � 1, (2)

giving rise to ‘Fisher Averaging’ (FA). We could similarly include S0 by using the Fisher F0 of
the LLM. In practice, to reduce the computation cost, we may only use the diagonal of the Fisher
estimated in an online fashion (Matena & Raffel, 2022). This is similar to strategies in continual
learning (Kirkpatrick et al., 2017) where the choice of Fisher is justified through Bayesian updating
Huszár (2018). However, such connections are not yet explored or exploited for model merging.

Using Fisher should improve things a bit but the extent of improvement is unclear. A recent work
by Jin et al. (2023) uses insights from linear models to justify some of these choices, but such
justification may not hold for nonlinear models. In general, it is also not clear how Fisher-averaging
takes care of the commonalities between the fine-tuning ✓t of the LLM ✓LLM. Should we include
F0 or not, and how should it be combined with the other Ft so as to avoid double counting of
information in the models? The current practice is to simply tune ↵t on a validation set which is one
way to make up for the errors, but this can quickly become expensive as T increases.

Recently, Ilharco et al. (2023) proposed to subtract the contribution of ✓LLM with the follow-
ing simple ‘task arithmetic’ (TA): ✓̄TA = ✓LLM +

PT
t=1 ↵t(✓t � ✓LLM). Subtracting ✓LLM
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1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurIPS, 2019 
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurIPS, 2020

Class 0

Class 1



Bayesian Learning Rule [1]

• Bridge DL & Bayesian learning [2-5] 
– SOTA on GPT-2 and ImageNet [5]

• Improve DL [5-7]
– Calibration, uncertainty, memory etc.
– Understand and fix model behavior

• Towards human-like quick adaptation
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