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Al that learns as quickly as
humans and animals

Quickly adapt to new situations in the future
by robustly preserving & using past knowledge



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Fail because too quick to adapt

TayTweets: Microsoft Al bot manipulated
into being extreme racist upon release
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Fail because too slow to adapt

https://www.youtube.com/watch?v=Txobt WAFh80 9



https://www.youtube.com/watch?v=TxobtWAFh8o

Adaptive & Robust Learning with Bayes

* “Good” algorithms are inherently Bayesian

* Bayesian learning rule [1]
* Robustness: Memorable experiences [2]

* Adaptation: Knowledge-Adaptation Priors
[3,4,5]

* Take away: A new perspective of Bayes,
essential for adaptive and robust deep learning

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Tailor, Chang, Swaroop, Solin, Khan. Memorable experiences of ML models (in preparation)

3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)
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https://arxiv.org/abs/2106.08769

See Section 6 (discussion) in Khan and Rue, 2021

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION,

The Origin of Algorithms

A good algorithm must revise its
*past™ beliefs by using useful
*future™ information

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021 11



Bayesian learning rule

See Table 1 in Khan and Rue, 2021

Learning Algorithm

Posterior Approx. Natural-Gradient Approx.

Sec.

Gradient Descent
Newton’s method

Multimodal optimization (New)

Optimization Algorithms
Gaussian (fixed cov.) Delta method
Gaussian

Mixture of Gaussians

1.3
1.3
3.2

Stochastic Gradient Descent
RMSprop/Adam

Dropout

STE
Online Gauss-Newton (OGN)

(New)

Variational OGN (New)
BayesBiNN (vew)

Deep-Learning Algorithms

Gaussian (fixed cov.) Delta method, stochastic approx.

Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

Gaussian (diagonal cov.)

Mixture of Gaussians Delta method, stochastic approx.,

responsibility approx.
Bernoulli Delta method, stochastic approx.

Gauss-Newton Hessian approx. in
Adam & no square-root scaling

—_— Remove delta method from OGN
Remove delta method from STE

Gaussian (diagonal cov.)

Bernoulli

4.1
4.2

4.5
4.4

4.4
4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes
Laplace’s method
Expectation-Maximization
Stochastic VI (SVI)

VMP

Non-Conjugate VMP
Non-Conjugate VI ew)

Set learning rate py = 1

Delta method

Exp-family
Gaussian

Exp-Family + Gaussian  Delta method for the parameters

Exp-family (mean-field)  Stochastic approx., local p; = 1

pt = 1 for all nodes

[43 143

Mixture of Exp-family None

5.1
4.4
5.2
5.3
5.3
5.3
5.4
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A Bayesian Origin

min £(0) vs min E ) [£(0)] — H(q)
0 qETQ Entropy
Posterior approximation (expo-family)
Bayesian Learning Rule [1,2] (natural-gradient descent)

Natural and Expectation parameters of g

A (1— p)h— pVIE, ()]

* y ¥}

|, I
Old belief  New information = natural gradients

Using posterior’s information geometry to balance new vs old information

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021
2. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-
conjugate models to inferences in conjugate models.” Alstats (2017).
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Bayesian learning rule: A < (1 — p)A — pV ,E,[¢(0)]

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.
Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3
Multimodal optimization (vew)y Mixture of Gaussians e 3.2
Deep-Learning Algorithms
Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1
RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (New) —_— Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p; = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP ‘e — 5.3
Non-Conjugate VI ew) Mixture of Exp-family None 5.4
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See Section 1.3.1 in Khan and Rue, 2021

Gradient Descent from Bayes

Gradient descent: ¢ < 0 — pV£(0)

Bayes Learn Rule: m < m — pV,,£(m)

“Global” to “local” | -
(the delta method) | 0 T PV g [£(0))

B O] = m) | A= A= pV,, (Eql€(0)] — H(q))

Derived by choosing Gaussian with fixed covariance

" Gaussian distribution ¢(9) := A/ (m, 1)
Natural parameters Ai=m

Expectation parameters 1 := E,[0] = m
_Entropy H(q) := log(2) /2

J
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Bayesian learning rule: A < (1 — p)A — pV ,E,[¢(0)]

Learning Algorithm

Posterior Approx. Natural-Gradient Approx.

Sec.

Put the expectation

Optimization Algorithms

Gradient Descent

Gaussian (fixed cov.) Delta method

(Bayes) back in!

1.3

Newton’s method

Multimodal optimization (New)

Gaussian

Mixture of Gaussians

1.3
3.2

Stochastic Gradient Descent
RMSprop/Adam

Dropout

STE

Deep-Learning Algorithms

Gaussian (fixed cov.) Delta method, stochastic approx.

Delta method, stochastic approx.,
Hessian approx., square-root scal-
ing, slow-moving scale vectors

Gaussian (diagonal cov.)

Delta method, stochastic approx.,
responsibility approx.

Mixture of Gaussians

Bernoulli Delta method, stochastic approx.

4.1
4.2

4.5

Online Gauss-Newton (OGN)

(New)

Variational OGN ew)

Gauss-Newton Hessian approx. in
Adam & no square-root scaling

% Remove delta method from OGN

Gaussian (diagonal cov.)

4.4

4.4

BayesBiNN (vew)

Bernoulli Remove delta method from STE

4.5

Approximate Bayesian Inference Algorithms

Conjugate Bayes
Laplace’s method
Expectation-Maximization
Stochastic VI (SVI)

VMP

Non-Conjugate VMP
Non-Conjugate VI ew)

Set learning rate py = 1

Delta method

Exp-family

Gaussian

Exp-Family + Gaussian  Delta method for the parameters
Exp-family (mean-field)  Stochastic approx., local p; = 1

pt = 1 for all nodes

[43 143

Mixture of Exp-family None

5.1
4.4
5.2
5.3
5.3
5.3
5.4

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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See Section 1.2, Eq 2 in Khan and Rue, 2021

Bayes Objective

Stancare deviztion: .00 : »\

£(0)

E(loss)

~1.40

-0.54

-0.72

Standard Deviation

-0.90

Mean

Instead of the
original loss,
optimize a different
one (Gaussian
convolution)

A popular idea of

- “implicit

regularization” in
DL [4], but also
common in other
fields (RL, search,
robust optimization)

1. Zellner, A. "Optimal information processing and Bayes's theorem." The American Statistician (1988)

2. Many other: Bissiri, et al. (2016), Shawe-Taylor and Williamson (1997), Cesa-Bianchi and Lugosi (2006)
3. Huszar’s blog, Evolution Strategies, Variational Optimisation and Natural ES (2017)

4. Smith et al., On the Origin of Implicit Regularization in Stochastic Gradient Descent, ICLR, 2021



See Eqg 25 in Khan and Rue, 2021 (Bonnet’s theorem)

Bayes Prefers Flatter directions

GD: 0+ 06— pVyl(0) = V,£(0:) =0
BLR: m <= m — pVp,Eqll(0)] = V,E[£0)]=0
= E,[V,£(0)] =0

Bayesian solution

injects “noise” which has

a similar regularization -
effect to noise in s
Stochastic GD. It prefers
“flatter” directions.




SGD: Implicit Regularization

(By Thomas Moellenhoff)



Bayes: Explicit Regularization

Estimating Gaussian posteriors where the
variance is fixed, and only the mean is estimated [E_ [ V£ (0)] =0

By increasing the
2 variance, we can
move the mode
15 arbitrarily far.

10 . .
Bayesian“noise”
has a similar
regularization to
: the SGD noise.
It prefers “flatter”
g . directions.




See Section 1.3 and 3.2 in Khan and Rue, 2021

Deriving Learning-Algorithms from
the Bayesian Learning Rule

Posterior Approximation «— Learning-Algorithm

Complex < >  Simple

Gradient

Bayes’ rule Mixture Newton  pascent

of Newton

21



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes
Newton’s method: 0 < 6 — H, " [Val(0)]

(Sm — (1 - )Sml— pPVE, () Eq[l(0)]
- —S — QE2)8) P IDY ooy EEP)
e N— X (B V(B @ q)) (—V,.H(q) = A

Derived by choosing a multivariate Gaussian
1 )
)

" Gaussian distribution g(6) := N (8|m, S
Natural parameters A= {Sm,—S5/2}
_ Expectation parameters 1 := {E,(6), Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 29



See Section 1.3.2 in Khan and Rue, 2021

Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, " [V/(0)]

Set p=1toget m < m — H_'[V,.0(m)]
s N

m < m — pS  Vl(m)
S~ 1—=p)S+pH,
Express in terms of gradient and Hessian of loss:
Vi, 0)Eq[€(0)] = Eq[Vol(0)] — 2Eq[Hom
Vi, 007)Eq€(0)] = Eq[Ho]
Sm < (1 — p)Sm — pVa, (5 Eq[€(9))
S <« (1 — ,O)S — IOQVEQ(QQT)EQM(Q)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Delta Method
Eq|0(0)] =~ £(m)

23



BLR Variants

RMSprop Variational Online Gauss-Newton (VOGN)
g+ V(6) g+ V(0), where 6 ~ N (m,c?)
s (1= p)s + pg° s (1= p)s+p(Xig;)
0—0—a(/s+6) g m < m — a(s +v) Vel(6)

ol (s+7)7

Available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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https://github.com/team-approx-bayes/dl-with-bayes

Uncertainty of Deep Nets

VOGN: A modification of Adam but match the
performance on ImageNet

Iteration 1
70¢F
101
> 60}
5 o
iy
- § 50¢
2 S
0.
= S 40}
)
(v}
=51 3 2
;‘ —— Adam ‘>° 30
J. VOGN
s 0 : 20 20 40 60 80
Input 1 epoch

Code available at https://github.com/team-approx-bayes/dl-with-bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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https://github.com/team-approx-bayes/dl-with-bayes

BLR variant [3] got 1st prize in NeurlPS
2021 Approximate Inference Challenge

Watch Thomas Moellenhoff’s talk at
https://www.youtube.com/watch?v=LQInINSEU7E.

Mixture-of-Gaussian Posteriors with an
Improved Bayesian Learning Rule

Thomas Moéllenhoff!, Yuesong Shen?, Gian Maria Marconi?
Peter Nickl', Mohammad Emtiyaz Khan?

s Q.

1 Approximate Bayesian Inferance Team 2 Computer Vision Graup
RIKEN Center for Al Frajact, Tokya, Japan Technical University of Munich, Gemmany

Dec 14th, 2021 — NeurlPS Warkshop on Bayesian Deep Learning

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
3. Lin et al. “Handling the positive-definite constraints in the BLR.” ICML (2020).
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See Section 4.4, Fig. 1 in Khan and Rue, 2021

Bayes leads to robust solutions

Avoiding sharp minima




i

Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)zs
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Robustness

Good algorithms can tell apart
relevant vs irrelevant information

30



Perturbation, Sensitivity, and Duality

31



See Section 5.4 in Khan and Rue, 2021 for local parameterization
See Section 3 in ADAM et al. 2021 for dual parameterization

BLR Solutions & Thelr Duality

Zé A (1—0p) )‘_ZIOVMEQ 4:(0)]
Zv E-[—;(0)]
\ ;
-

Global and local natural parameter

Local parameters are Lagrange Multipliers, measuring the
sensitivity of BLR solutions to local perturbation [1]. They
can be used to tell apart relevant vs irrelevant data.

1. ADAM, Chang, Khan, Solin, Dual parameterization of SVGP, NeurlPS, 2021
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Memorable Experiences _

\/:) (~
N =S VB [60)] &
1=0 ~
)\:-j Uncertain
| O
“Global” Local predictions q(f@)
posterior
9 e Logistic loss
q(0) fi =z, QEasy

7 ™\

Uncertain )
QOutlier

©

Lower Sensitivity
to easy example.

Such sensitivity
analysis leads to
memorable
experiences
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Uncertain Outliers

Memorable Experiences
FMNIST

T-shirt Pullover SandalAnkle boot Shirt

T, :
2 ‘ J
oy d
A AR
. |
: 1
|

1. Schneider et al. DeepOBS: A Deep Learning Optimizer Benchmark Suite”. ICLR 2018



Advantages of Memorable Experiences

* Through posterior approximations, the criteria to
categorize examples naturally emerges

— Generalizes existing concepts such as support
vectors, influence functions, inducing inputs etc

* Local parameters are available for free and applies
to almost “any” ML problem

— Supervised, unsupervised, RL
— Discrete/continuation loss and model parameters
* The sensitivity of posterior leads to “Bayes Duality”

1. Tailor, Chang, Swaroop, Tangkaratt, Solin, Khan. Memorable experiences of ML models (in preparation)



The webpage is available at https://bayesduality.github.io/, and Twitter account @BayesDuality

The Bayes-Duality Project

Toward Al that learns adaptively, robustly, and continuously, like humans

Julyan Arbel Kenichi Bannai

Research director Co-PI (Japan side)
(Japan side) (France side)

Math-Scierce Team at
Approx-Bayes team at Statify-team, Inria RIKEN-AIP ard <eo

RIKEN-AIP and OIST Grenoble Rhone-Alpes University

Received total funding of around USD 3 million through JST’s

CREST-ANR and Kakenhi Grants.

Rio Yokota

Co-PI
(Japan side)

Tokyo [nstitute of
Tecknclogy
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Adaptation

Continual Learning without
forgetting the past (by using
memorable examples)
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Continual Learning

Avoid forgetting by using memorable examples [1,2]

Task 2 0 Task 3
Qo o S
Class O:: %b %’0
.E O &
IJQ: X
myin )
(@)
(@)
DDD
Task 1
Class 1

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020 38



Functional Regularization of
Memorable Past (FROMP) [4]

Previous approaches used weight-regularization [1,2]

Qnew(e) — Hélél Eq(@) wnew (9)] — H(Q) — Eq(@) [lOg QOld((g)]
! New data Weight-regularizer

We replace it by a functional
regularizer using a “Gaussian Eq, e [log do,,, ()]
Process view” of DNNs [2]

o(£(0)) — o (fora)] K gl (£(0)) — o (fora)]
Kernels weighs examples /~ Forces netlwork-outputs

according to their memorability to be similar

1. Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS 2017

2. Nguyen et al., Variational Continual Learning, ICLR, 2018
3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020
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See Section 3 and 4, and App Ain [2]

K-Priors and Bayes-Duality

* Dual parameterization of DNNs
— expressed as Gaussian Process [1]
— Found using the Bayesian learning rule

* The functional regularizer can provably
reconstruct the gradient of the past faithfully [2]

— Knowledge-Adaptation priors (K-priors)

— There is a strong evidence that “good”
adaptive algorithms must use K-priors

1. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019
2. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769)



https://arxiv.org/abs/2106.08769
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Faithful Gradient Reconstruction

M=0 True grads (black) ve K-priar (red)

No labels required, so . can include any inputs!
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Summary

* A new perspective of Bayes, essential for
adaptive and robust deep learning

* Approximate posteriors are crucial
— Bayesian learning rule [1]
— Robustness: Memorable experiences [2]
— Adaptation: K-Priors [3,4,5]

* Bayes-duality for Al that learns like humans

1. Khan and Rue, The Bayesian Learning Rule, arXiv, https://arxiv.org/abs/2107.04562, 2021

2. Tailor, Chang, Swaroop, Tangkaratt, Solin, Khan. Memorable experiences of ML models (in preparation)

3. Khan et al. Approximate Inference Turns Deep Networks into Gaussian Process, NeurlPS, 2019

4. Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past, NeurlPS, 2020

5. Khan and Swaroop. Knowledge-Adaptation Priors, NeurlPS, 2021 (https://arxiv.org/abs/2106.08769) 43
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