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The Goal of Our Research

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Human Learning:

At the age of 6
months, learning by
actively and
sequentially
collecting limited and
correlated data.




Converged

at the age
of

12 months




Transfer
Knowledge

at the age
of 14

months




Human learning # Deep learning

Humans can learn from Machines require large
limited, sequential, amount of 11D data, and
correlated data, with a don’t really understand
clear understanding of the world and cannot
the world. reason about it.

Our current research focuses on reducing this gap!



Approximate Bayesian Inference

» Bayesian Learning =~ human learning

— But computationally very difficult!

» Scalable approximation algorithms
— with principles of human learning
— while generalizing existing algorithms.

* Today'’s talk

— New deep-learning algorithms that “know how
much they don’t know” (uncertainty).



Uncertainty in Deep Learning

(by Kendall et al. 2017)
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| |% BN ] v
SO YRS o
,-"—a«\ i T "k b

rediction




Challenges

The data and model are both extremely large.

Data DNN Parameters
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A simple solution (ensemble method):

- Predict using multiple networks.

- Where they agree, we are more certain.

- Where they disagree, we are less certain.
This is very expensive!



A Bayesian Solution

- Estimate a distribution over model parameters.
- Draw multiple networks from the distribution.

Distribution (e.g. Gaussian) Entropy
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(e.g., mean and variance)

Rest of the talk: Estimate mean and variance when
training just “one” (or a few) deep network.
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Contribution | : CVI

(Khan and Lin, Conjugate-Computation VI, Alstats 2017)
Deep Learning: SGD

0« 6 — pVol(0)
Bayesian Deep Learning: CVI

A\ )\ ﬂvuﬁ Moments of g

(e.g. mean & correlation)

CVl is a generalization of many existing algorithms:
least-squares, Newton’s method, EM, Kalman filters,
HMM, Forward-backward,.... and SGD.
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Contribution Il : Vadam and VOGN

(Khan et al., Fast and scalable Bayesian deep learning, ICML 2018)

Dedprie@@Bdl optimizer (e.g. Adam)

0. Sample € from a standard normal distribution
Otemp < 0 + € * \/\N*scaleJr 1’

1. Select a minibatch "Variance

2. Compute gradient using backpropagation

3. Compute a scale vector to adapt the learning rate
4. Take a gradient step

gradiadient / N
Vsale + 10738

Mean f & 0 + learning ate =
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Input 2

10

lllustration: Classification
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Adam vs Our Method (on Logistic-Reg)

Iteration 1

— Adam

— Our method
(mean)

Our method
(samples)

M =5,
Rho =0.01,
Gamma = 0.01



Input 2

Adam vs Our Method (on Neural Nets)

Epoch O

4

— Adam
—  OUurs
(mean)

Ours
(samples)

(By Runa E.)
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Adam vs Our Method (Real Data)

LeNet5 on FMNIST
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Deep Reinforcement Learning

On OpenAl Gym Cheetah with DDPG

with DNN with [400,300] RelLU
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Summary

* Approximate Bayesian inference

— Fast uncertainty computation in deep learning
— Generalization of many well-known algorithms

* Many generalizations and Extensions!



On-Going Work (for 2019)

* Scaling it up!
— Bayesian inference on Imagenet in “x” minutes
— Built-in VOGN optimizer in PyTorch.

* Enable sequential learning (online/ continual/ life-
long/ Active/ Reinforcement learning)
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz.khan@riken.jp

Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence |7]-|9]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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