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The Goal of Our Research

“To understand the fundamental principles of 
learning from data and use them to develop 
algorithms that can learn like living beings.”
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Human Learning:
At the age of 6 

months, learning by 
actively and 
sequentially 

collecting limited and 
correlated data.



Converged 
at the age 

of 
12 months
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Transfer 
Knowledge
at the age 

of 14 
months



Human learning        Deep learning
Humans can learn from 

limited, sequential, 
correlated data, with a 
clear understanding of 

the world.
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Machines require large 
amount of IID data, and 
don’t really understand 
the world and cannot 

reason about it.

Our current research focuses on reducing this gap!



Approximate Bayesian Inference

• Bayesian Learning      human learning 
(Tannenbaum 1999)
– But computationally very difficult!

• Scalable approximation algorithms 
– with principles of human learning 
– while generalizing existing algorithms.

• Today’s talk
– New deep-learning algorithms that “know how 

much they don’t know” (uncertainty).
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(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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Uncertainty in Deep Learning
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Challenges
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The data and model are both extremely large.

A simple solution (ensemble method):
- Predict using multiple networks.
- Where they agree, we are more certain.
- Where they disagree, we are less certain.
This is very expensive!



A Bayesian Solution
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- Estimate a distribution over model parameters.
- Draw multiple networks from the distribution.

EntropyDistribution (e.g. Gaussian)

Parameters
(e.g., mean and variance) L(�)

<latexit sha1_base64="U8NH2Zw0tfLQaPF2qbrRIzC7MBs=">AAAB/XicbVDLSsNAFL2pr1pf8bETJFiEuimJG11JwY0LFxXsA5pQJpNJO3QyCTMToYbid3TXjQtF3Pof7vwbJ20X2npg4HDuPdwzx08Ylcq2v43Cyura+kZxs7S1vbO7Z+4fNGWcCkwaOGaxaPtIEkY5aSiqGGkngqDIZ6TlD27yeeuRCElj/qCGCfEi1OM0pBgpLXXNIzdCqo8Ry+5GFZdpY4DOu2bZrtpTWMvEmZNy7WQ8ngBAvWt+uUGM04hwhRmSsuPYifIyJBTFjIxKbipJgvAA9UhHU44iIr1smn5knWklsMJY6MeVNVV/OzIUSTmMfL2ZZ5WLs1z8b9ZJVXjlZZQnqSIczw6FKbNUbOVVWAEVBCs21ARhQXVWC/eRQFjpwkq6BGfxy8ukeVF17Kpzr9u4hhmKcAynUAEHLqEGt1CHBmB4ggm8wpvxbLwY78bHbLVgzD2H8AfG5w8N0pcj</latexit><latexit sha1_base64="LKHBxMK1NT0K7Hbqu3hqYcsXzRs=">AAAB/XicbVDLSsNAFJ34rPUVHztBBotQNyVxoyspuHHhooJ9QBPKzXTSDp1MwsxEqKH4Hbpy40IRt/6HO//GSduFth4YOJxzL/fMCRLOlHacb2thcWl5ZbWwVlzf2Nzatnd2GypOJaF1EvNYtgJQlDNB65ppTluJpBAFnDaDwWXuN++oVCwWt3qYUD+CnmAhI6CN1LH3vQh0nwDPrkdlj5vFLpx07JJTccbA88SdklL18DHHU61jf3ndmKQRFZpwUKrtOon2M5CaEU5HRS9VNAEygB5tGyogosrPxulH+NgoXRzG0jyh8Vj9vZFBpNQwCsxknlXNern4n9dOdXjuZ0wkqaaCTA6FKcc6xnkVuMskJZoPDQEimcmKSR8kEG0KK5oS3Nkvz5PGacV1Ku6NaeMCTVBAB+gIlZGLzlAVXaEaqiOC7tEzekVv1oP1Yr1bH5PRBWu6s4f+wPr8AWsPmOg=</latexit><latexit sha1_base64="LKHBxMK1NT0K7Hbqu3hqYcsXzRs=">AAAB/XicbVDLSsNAFJ34rPUVHztBBotQNyVxoyspuHHhooJ9QBPKzXTSDp1MwsxEqKH4Hbpy40IRt/6HO//GSduFth4YOJxzL/fMCRLOlHacb2thcWl5ZbWwVlzf2Nzatnd2GypOJaF1EvNYtgJQlDNB65ppTluJpBAFnDaDwWXuN++oVCwWt3qYUD+CnmAhI6CN1LH3vQh0nwDPrkdlj5vFLpx07JJTccbA88SdklL18DHHU61jf3ndmKQRFZpwUKrtOon2M5CaEU5HRS9VNAEygB5tGyogosrPxulH+NgoXRzG0jyh8Vj9vZFBpNQwCsxknlXNern4n9dOdXjuZ0wkqaaCTA6FKcc6xnkVuMskJZoPDQEimcmKSR8kEG0KK5oS3Nkvz5PGacV1Ku6NaeMCTVBAB+gIlZGLzlAVXaEaqiOC7tEzekVv1oP1Yr1bH5PRBWu6s4f+wPr8AWsPmOg=</latexit><latexit sha1_base64="53i1XHcFvcKwFW9eF1oxTXWDuWY=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuimJG11JwY0LFxXsA5pQJpNpO3QyCTMToYbir7hxoYhb/8Odf+OkzUJbDwwczr2He+YECWdKO863VVpZXVvfKG9WtrZ3dvfs/YO2ilNJaIvEPJbdACvKmaAtzTSn3URSHAWcdoLxdT7vPFCpWCzu9SShfoSHgg0YwdpIffvIi7AeEcyz22nN48YY4rO+XXXqzgxombgFqUKBZt/+8sKYpBEVmnCsVM91Eu1nWGpGOJ1WvFTRBJMxHtKeoQJHVPnZLP0UnRolRINYmic0mqm/HRmOlJpEgdnMs6rFWS7+N+ulenDpZ0wkqaaCzA8NUo50jPIqUMgkJZpPDMFEMpMVkRGWmGhTWMWU4C5+eZm0z+uuU3fvnGrjqqijDMdwAjVw4QIacANNaAGBR3iGV3iznqwX6936mK+WrMJzCH9gff4AGgCU8w==</latexit>

max
�

�Eq�(✓)[`(D, ✓)]�H(q)
<latexit sha1_base64="a2SduFV9lUVAyDPwUVCIZ7Gp2kM=">AAACVHicbVFNaxRBEK2ZGI2rxk08emkMwgY2y0wO6kkCUcgxgpsEtoehpqc222zPR7p7xKUZyL/y4K/Qg+Av8eLB3tlVNLGg4fFePepVdVYraWwUfQ/CjTubd+9t3e89ePho+3F/Z/fMVI0WNBaVqvRFhoaULGlspVV0UWvCIlN0ns2Pl/r5B9JGVuV7u6gpKfCylFMp0Hoq7c95gR9TrrwjR8aHfMgOPGVnWebetqlzvJvhNOUtu/rdOOB2Rhb325ZNOCk16CwClXvTDtdawg7YH/qkHVztp/29aBR1xW6DeA32jl58/nQNAKdp/yvPK9EUVFqh0JhJHNU2caitFIraHm8M1SjmeEkTD0ssyCSuC9yy557J2bTS/pWWdezfDoeFMYsi853LlOamtiT/p00aO32VOFnWjaVSrAZNG8VsxZYXZrnUJKxaeIBCS5+ViRlqFNb/Q88fIb658m1wdjiKo1H8zl/jNaxqC57CMxhADC/hCE7gFMYg4Av8CCAIgm/Bz3Aj3Fy1hsHa8wT+qXD7F1WFtWQ=</latexit><latexit sha1_base64="yRO2Z7R/BAXqi219G8O7pArbmKc="></latexit><latexit sha1_base64="yRO2Z7R/BAXqi219G8O7pArbmKc="></latexit><latexit sha1_base64="9pn/pAr+OpcvbEPiq2AYxg5z4f8="></latexit>

Rest of the talk: Estimate mean and variance when 
training just “one” (or a few) deep network.



Contribution I : CVI
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✓  ✓ � ⇢r✓`(✓)
<latexit sha1_base64="b3ZaOZVwO68VYWPwzM9cwLApbiY=">AAACI3icbVBNSxxBEK0xxo816hqPQmiUgDm4zHhRPIiQi0eFrAo7y1LTW+M29nQP3TXKsuwP8eYlfyWXHBTJJQf/S3o/An49aHi894rqelmplec4/hvNfJj9ODe/sFhb+rS8slpf+3zmbeUkNaXV1l1k6EkrQ01WrOmidIRFpuk8u/o+8s+vyXllzQ/ul9Qu8NKoXEnkIHXqByn3iFGkmnJG5+yNmCo7InU9K1KDmcbO/xhpvT3h3zr1rbgRjyHekmRKto6+3N7eAcBJp/6Ydq2sCjIsNXrfSuKS2wN0rKSmYS2tPJUor/CSWoEaLMi3B+Mbh+JrULoity48w2KsPp8YYOF9v8hCskDu+dfeSHzPa1Wc77cHypQVk5GTRXmlBVsxKkx0lSPJuh8ISqfCX4XsoUPJodZaKCF5ffJbcrbbSOJGchraOIQJFmADNmEbEtiDIziGE2iChDv4BffwEP2MfkeP0Z9JdCaazqzDC0RP/wBjQaZG</latexit><latexit sha1_base64="FKuZMjKUO00KRMaGV2V+4A+o5QI=">AAACI3icbVC7SgRBEJz17fk6NRRkUAQNPHZNFAMRTAwVPBVuj6N3rtcbnJ1ZZnqV4/BDNDLxV0wMFDEx8F+cewi+CgaKqmp6upJcSUdh+B4MDY+Mjo1PTJampmdm58rzC6fOFFZgVRhl7HkCDpXUWCVJCs9zi5AlCs+Sy4Ouf3aF1kmjT6idYz2DCy1TKYC81CjvxtRCAh4rTAmsNdd8oGzy2LYMjzUkChpfMVRqvc83GuXVsBL2wP+SaEBW95dvu7g7apRf46YRRYaahALnalGYU70DlqRQeFOKC4c5iEu4wJqnGjJ09U7vxhu+5pUmT431TxPvqd8nOpA5184Sn8yAWu631xX/82oFpTv1jtR5QahFf1FaKE6GdwvjTWlRkGp7AsJK/1cuWmBBkK+15EuIfp/8l5xuVaKwEh37NvZYHxNsia2wdRaxbbbPDtkRqzLB7tkje2YvwUPwFLwGb/3oUDCYWWQ/EHx8AsB+qAs=</latexit><latexit sha1_base64="FKuZMjKUO00KRMaGV2V+4A+o5QI=">AAACI3icbVC7SgRBEJz17fk6NRRkUAQNPHZNFAMRTAwVPBVuj6N3rtcbnJ1ZZnqV4/BDNDLxV0wMFDEx8F+cewi+CgaKqmp6upJcSUdh+B4MDY+Mjo1PTJampmdm58rzC6fOFFZgVRhl7HkCDpXUWCVJCs9zi5AlCs+Sy4Ouf3aF1kmjT6idYz2DCy1TKYC81CjvxtRCAh4rTAmsNdd8oGzy2LYMjzUkChpfMVRqvc83GuXVsBL2wP+SaEBW95dvu7g7apRf46YRRYaahALnalGYU70DlqRQeFOKC4c5iEu4wJqnGjJ09U7vxhu+5pUmT431TxPvqd8nOpA5184Sn8yAWu631xX/82oFpTv1jtR5QahFf1FaKE6GdwvjTWlRkGp7AsJK/1cuWmBBkK+15EuIfp/8l5xuVaKwEh37NvZYHxNsia2wdRaxbbbPDtkRqzLB7tkje2YvwUPwFLwGb/3oUDCYWWQ/EHx8AsB+qAs=</latexit><latexit sha1_base64="aiPNs/sKY0dlzbpQEObh4s3xI84=">AAACI3icbVDLSgNBEJz1bXxFPXoZDIIeDLteFA8iePGoYFTIhtA76TWDszPLTK8Sgv/ixV/x4kERLx78FyfJCr4KBoqqanq6klxJR2H4HoyNT0xOTc/MVubmFxaXqssr584UVmBDGGXsZQIOldTYIEkKL3OLkCUKL5Lro4F/cYPWSaPPqJdjK4MrLVMpgLzUru7H1EUCHitMCaw1t7xUtnlsu4bHGhIF7a8YKrU54lvtai2sh0PwvyQqSY2VOGlXX+OOEUWGmoQC55pRmFOrD5akUHhXiQuHOYhruMKmpxoydK3+8MY7vuGVDk+N9U8TH6rfJ/qQOdfLEp/MgLrutzcQ//OaBaV7rb7UeUGoxWhRWihOhg8K4x1pUZDqeQLCSv9XLrpgQZCvteJLiH6f/Jec79SjsB6dhrXDg7KOGbbG1tkmi9guO2TH7IQ1mGD37JE9s5fgIXgKXoO3UXQsKGdW2Q8EH59vb6QW</latexit>

Deep Learning: SGD

Bayesian Deep Learning: CVI

CVI is a generalization of many existing algorithms: 
least-squares, Newton’s method, EM, Kalman filters, 
HMM, Forward-backward,…. and SGD.

Moments of q
(e.g. mean & correlation)

(Khan and Lin, Conjugate-Computation VI, AIstats 2017)



Deep learning optimizer (e.g. Adam)Vadam/VOGN

Contribution II : Vadam and VOGN
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1. Select a minibatch
2. Compute gradient using backpropagation
3. Compute a scale vector to adapt the learning rate
4. Take a gradient step

 

Variance

Mean

(Khan et al., Fast and scalable Bayesian deep learning, ICML 2018)



Illustration: Classification
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Logistic regression 
(30 data points, 2 

dimensional input). 
Sampled from 

Gaussian mixture 
with 2 components



Adam vs Our Method (on Logistic-Reg)
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M = 5,
Rho = 0.01, 
Gamma = 0.01

Adam
Our method 
(mean)
Our method 
(samples)



Adam vs Our Method (on Neural Nets)
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Adam
Ours
(mean)
Ours 
(samples)

(By Runa E.)



Adam vs Our Method (Real Data)

16(By Anirudh Jain)

Adam:
- LR: 1e-3
- beta1[Momentum]: 0.9
- beta2[Scale]: 0.999

Ours (VOGN):
- LR: 1e-2 with decay rate: 0.9
- beta1[Momentum]: 0.9
- beta2[Scale]: 0.999
- Prior Precision: 1
- Initial Precision: 400
- MC samples[Train]: 10
- MC samples[Test]: 100

Adam
Ours

Uncertainty



Deep Reinforcement Learning
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On OpenAI Gym Cheetah with DDPG 
with DNN with [400,300] ReLU

Vadam(noise using
 natural-gradients)

SGD (noise using 
standard gradients)

Reward 2038

Reward 5264

Ruckstriesh et.al.2010, Fortunato et.al. 2017, Plapper et.al. 2017

SGD (no noise)



Summary

• Approximate Bayesian inference
– Fast uncertainty computation in deep learning
– Generalization of many well-known algorithms

• Many generalizations and Extensions!
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On-Going Work (for 2019)

• Scaling it up!
– Bayesian inference on Imagenet in “x” minutes
– Built-in VOGN optimizer in PyTorch.

• Enable sequential learning (online/ continual/ life-
long/ Active/ Reinforcement learning)

19
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