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Abstract
We propose a new variational inference method
which uses recognition models for amortized in-
ference in graphical models that contain deep gen-
erative models. Unlike many existing approaches,
our method can handle non-conjugacy in both the
latent graphical model and the deep generative
model, and enables fully amortized inference at
test time. Our method is based on an extension
of a recently proposed mirror-descent algorithm
and employs natural-gradient updates for all three
components of the model, i.e. the latent graph-
ical model, the deep generative model, and the
recognition model. We also propose structured
recognition models to capture posterior correla-
tions among local latent variables. We show that
our method has computational advantages over ex-
isting approaches in two classes of non-conjugate
models, namely, latent mixture models and non-
linear state-space models. An additional advan-
tage of our method is that it can be implemented
by reusing existing software for graphical models
and deep models.

1. Introduction
In this paper, we develop a new amortized inference method
for graphical models that contain deep generative models.
Such models merge two important lines of work, namely
deep learning and probabilistic inference. Several works
have recently proposed these types of models (Archer et al.,
2015; Krishnan et al., 2015; Johnson et al., 2016). The first
two of these works have considered modeling of time-series
data with neural networks, while Johnson et al. (2016) pro-
pose to compose a general class of conjugate latent graphi-
cal models with neural networks and call it structured vari-
ational auto-encoders (SVAE). Inspired by recent works
on variational inference and deep learning, Johnson et al.
(2016) derive an inference scheme that combines ideas from
message passing, stochastic variational inference (SVI), and
back-propagation using the reparamaterization trick.

There are several issues with the work of Johnson et al.
(2016). The first issue is that their method requires a

strong conditional-conjugacy structure in the latent graph-
ical model. The second issue is that their method only
performs natural-gradient updates for some global latent
variables. The third issue is that their method does not
support amortized inference and therefore needs to run in-
ference over some of the local variables at test time. The
final issue is that their method does not model posterior
correlations among all the local latent variables.

In this paper, we propose a method to solve these issues
and generalize the method of Johnson et al. (2016) to a
larger class of models. Instead of using message pass-
ing or standard SVI, we use a more general method called
Conjugate-Computation Variational Inference (CVI) (Khan
& Lin, 2017). We extend this method to handle recognition
models by showing that its updates can be expressed as an
adaptive-gradient method. This results in a natural-gradient
method that does not require conditional-conjugacy, solving
the first two issues. We propose structured recognition mod-
els for local variables and show that amortized inference
can be performed while preserving the correlation between
all local variables. This solves the third and fourth issue.
Finally, our method can be implemented by reusing existing
software for graphical models and deep models.

2. Models and Related work
In this section, we describe the generative model as well as
our variational approximations. Figure 1 gives two examples
of the model classes. We consider models that employ
at most two layers of local latent variables to model N
observed outputs y = {y1,y2, . . . ,yN}. The first layer
contains continuous variables denoted by xn and the second
layer contains finite-discrete variables zn. We denote by
x and z the sets of these two local variables for all n. We
assume that the relationship between x and z is specified
by using a graphical model denoted by p(x, z,θ) where
θ is the set of all global variables. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan
et al., 2015), we model y given x using a neural-network
likelihood with γ being the neural-network parameters:

p(y,x, z,θ,γ) =

[
p(θ)p(x, z|θ)

]
︸ ︷︷ ︸
Latent graphical model

[
p(γ)

N∏
n=1

p(yn|xn,γ)

]
︸ ︷︷ ︸

Deep generative model
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Figure 1: Two examples of model classes. The left column
shows the latent mixture model and the right column shows
the non-linear state-space model. The top row shows the
model while the bottom row shows the recognition model.
Double lines indicate non-conjugate relationship, while the
solid line indicate conjugate ones. In our framework, all
distributions in the generative model can be non-conjugate,
but the recognition model is conjugate. Our recognition
models preserve structural dependencies among the local
variables that are present in the original model.

We assume all factors of the above distribution to be minimal
exponential family distributions. This model class is a more
general than the one considered by Johnson et al. (2016)
because we do not require the joint distribution p(x, z,θ) to
be conditionally-conjugate, i.e., p(x|z,θ), p(z|θ) and p(θ)
need not be conditionally conjugate.

Our goal is to estimate an approximation to the posterior
distribution of the x, z,θ and γ. In this paper, we propose
the following variational approximation with a structured
recognition model:

p(z,x,θ,γ|y) ≈ qφ(x, z|y)q(θ)q(γ) (1)

The recognition model facilitates fast amortized inference
which reduces computations at test time by avoiding infer-
ence over the local variables. Our proposal in this paper
is slightly more general than that of Johnson et al. (2016)
who consider qφ(x, z|y) = qφ(x|y)q(z), i.e., an amortize
inference is used for x, but q(z) still need to be inferred at
test time. Our structured-recognition models maintain lo-
cal structure present in the model, i.e., the structure among
the local variables in the variational approximation is the
same as that in the generative model. Moreover, our recog-
nition models can re-use existing conjugate factors in the
generative model.

Denoting the natural parameters of q(θ) and q(γ) specified

in (1) by λθ and λγ respectively (and λ := {λγ ,λθ}), the
lower bound to be optimized is given as follows:

L(φ,λ) := Eq log [p(y,x, z,θ,γ)/q(x, z,θ,γ)]

=

N∑
n=1

Eqφ(x,z|y)q(γ) [log p(yn|xn,γ)]

− Eq(θ) {DKL[qφ(x, z|y) ‖ p(x, z|θ)]}
− DKL[q(θ)q(γ) ‖ p(θ)p(γ)] (2)

Below, we give two examples of various graphical models
where our work is applicable. In all these examples, we
only specify p(x, z,θ) and assume that y is modeled using
a neural network.

Latent Mixture Models: For finite mixture models with
K mixture components, we assume a discrete assignment
vector zn whose k’th element is zn,k ∈ {0, 1} for every
vector xn. The distribution is shown below:

p(x, z|ψ,π) =

N∏
n=1

[
K∏
k=1

[πkp(xn|ψk)]znk

]
, (3)

{ψk, πk}Kk=1 ∼ p(θ), θ = {ψk, πk}Kk=1 (4)

where ψk is the parameter of the distribution of the k’th
mixture and πk is the mixture proportion which sums to 1.
The Gaussian mixture model is a member of this family, but
we also can handle non-conjugate mixture models.

Nonlinear State-Space Models: Consider the following
state-space model (Kokkala et al., 2015)

xn = f(xn−1,θ) + qn, qn ∼ N (qn|0,Q(θ)) (5)

where x0 ∼ N (x0|m0(θ),P0(θ)) and each xn is Gaussian
with its mean being a non-linear function f(xn−1) and θ are
model parameters distributed according to p(θ). The prior
need not be conjugate to x. Archer et al. (2015) propose
a variational inference method for these types of models,
but use a Gaussian posterior distribution with tri-diagonal
covariance which is quite restricted. Johnson et al. (2016)
consider a linear state-space model with a conjugate prior
p(θ) and our work generalizes their work to nonlinear state-
transitions. Krishnan et al. (2015) use RNN to model the
transitions and the likelihoods and their recognition model
is a bit more general than ours.

3. Main Contributions
We build upon the conjugate-computation variational infer-
ence (CVI) method of Khan & Lin (2017). This method
can handle non-conjugate factors, but it does not work with
recognition models. Our first contribution is to extend CVI
to handle recognition models and our second contribution is
to propose a structured-recognition model to simplify infer-
ence. We first give an overview of CVI and then describe
our two contributions in the subsequent sections.
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3.1. Conjugate-computation Variational Inference

The CVI method is based on a mirror-descent formula-
tion of the variational lower bound optimization in the
mean-parameter space. This reformulation enables natural-
gradient updates for the mean-field variational inference in
general non-conjugate graphical models. Stochastic vari-
ational inference (SVI) and variational message passing
(VMP) can be obtained as special cases when the model is
conditionally-conjugate.

We give a summary of the method below. Given a Bayesian
network over N nodes ui, we wish to obtain the mean-
field approximation q(u), where each component qi(ui) is
a minimal exponential family (denote its natural parameter
by λi and mean parameter, which is the expectation of
sufficient statistics, by µi). CVI assumes that conditional
distributions of ui given the rest of the nodes u/i can be
expressed as a product between a factor that is conjugate
to q(ui) (denoted by p̃ic) and a factor that is non-conjugate
(denoted by p̃inc), i.e.,

p(ui|u/i) ∝ p̃ic(ui,u/i)× p̃inc(ui,u/i). (6)

CVI employs the following mirror-descent update in the
mean-parameter space:

µi,t+1 = arg max
µi
〈µi, ∇̂µiL(µt)〉 −

1

βt
BA∗(µi‖µi,t),

(7)

where L(µ) is a reparameterization of the lower bound L in
terms of the mean parameter,A∗(µ) is the convex-conjugate
of the log-partition function of q(ui), BA∗ is the Bregman
divergence defined by A∗, µt and µi,t denote the values
of µ and µi, respectively, at iteration t, and βt > 0 is the
step-size.

An important feature of the above update is that there is
a closed-form solution. This update separately performs
conjugate and non-conjugate computation as shown below:

λi,t+1 = (1− βt)λi,t + βt
[
λ∗i,t+1 + ∇̂µiEq(log p̃inc)|µ=µt

]
,

(8)

where λ∗i,t+1 is the mean-field update obtained using only
the conjugate term p̃ic. The above update is a natural-
gradient update which exploits the geometry of the vari-
ational distribution. Therefore, CVI is a generalization of
SVI to non-conjugate models.

3.2. Contribution 1: CVI as an adaptive-gradient
method

CVI does not directly apply to the estimation of determin-
istic parameters such as the parameters of the recognition
model. In this section, we present a framework that enables

such application of CVI. Under our framework, CVI up-
dates can be expressed as an adaptive-gradient method, very
similar to methods such as AdaGrad and RMSprop. The
following claim summarizes our results.

Claim 1. Defining a Gaussian variational distribution for
φ at iteration t as qt(φ) = N (φ|φt,S

−1
t ), the CVI update,

shown below, approaches a local maximum of L(φ,λ) for
a fixed λ.

φt+1 = φt + βtS
−1
t+1ĝt, (9)

where St+1 = St − βtĤt with ĝt and Ĥt being the sample
approximations to the average gradient Eq(φ) [∇φL] and
Hessian Eq(φ)[∇2

φφL] at qt(φ).

The update is obtained by optimizing an expectation of
the lower bound Eq(φ)[L(φ,λ)], followed by some repa-
rameterization tricks. The proof of convergence to a local
maximum of L(φ,λ) is obtained by using a result given
in Appendix A of (Maaløe et al., 2016). These updates are
very similar to existing adaptive-gradient methods and we
can establish a connection by approximating the Hessian
by the following diagonal approximation (Martens, 2014):
∇2
φφL ≈ −diag(ĝ2). The method most similar to ours is

AROW (Crammer et al., 2009) which was originally pro-
posed for supervised online-learning with a hinge loss. If
we use S

1/2
t instead of St in the update of φt, our update

becomes equivalent to a noisy version of AdaGrad (Duchi
et al., 2011). We can also show that, by using a different
choice of the posterior q(φ), CVI updates arrive arbitrary
close to the updates of RMSprop. Finally, q(φ) can be non-
Gaussian, which could be used for exploiting conjugacy in
recognition models.

3.3. Contribution 2: Structured-Recognition Models
and Natural-Gradient Updates

In this section, we describe how to construct structured-
recognition models that preserve the structural dependencies
of the true posterior distribution of the local variables. We
also show how to obtain efficient natural gradient updates
that reuse existing software for implementation. Due to
space limitations, we describe our method on one particular
example of latent mixture model, although our method is
more generally applicable.

We choose a recognition model qφ(x, z|y) that consists of
three conditional distributions where the first and second
term are conjugate to each other with respect to xn:

qφ(xn, zn|yn) ∝ qφγ (xn|yn)qφψ (xn|zn)qφπ (zn), (10)

where φγ ,φψ, and φπ are the parameters of recognition
models that mimic the role of γ,ψ, and π in the latent MM.
This can also be seen in Figure 1. The three terms need to
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be chosen such that computing the marginal qφ(zn|yn) and
sampling the conditional qφ(xn, zn|yn) is easy.

One possible way to construct such recognition models is by
choosing qφ to be a conditionally-conjugate model, e.g., the
following distribution, a GMM with a Gaussian observation,
can be used as qφ(xn, zn|yn):

N
(
xn|µφγ (yn),Σφγ (yn)

)
N
(
xn|µ̄zn , Σ̄zn

)
M(zn; π̄),

where the second and third term constitute a GMM with
parameters φψ = {µ̄1:K , Σ̄1:K} and φπ = π̄1:K , while the
first term is a recognition model similar to VAE and corre-
sponds to a Gaussian measurement µφγ (yn) with mean xn
and covariance Σφγ (yn). Since this recognition model is
conjugate, we can easily sample from it and also compute
the marginal qφ(zn|yn). In this case these steps can be im-
plemented using the E-step in a GMM (we skip the details
due to space constraints). In general, these steps can be per-
formed by reusing inference on a conditionally-conjugate
model.

Given the marginal qφ(zn|yn) and samples x∗n from
qφ(xn, zn|yn), updates of the global variables are simpli-
fied and can be implemented using a combination of the
CVI update of (8) and (9). Figure 1c shows all the global
variables in the variational approximation. For the global
variables of the neural networks, i.e., γ and φγ , the update
(9) is very similar to that of a VAE with only one differ-
ence – the prior distribution over xn is a mixture instead
of a single Gaussian prior. For the global variables of the
mixture model, i.e., π and ψ, the update (8) can be used.
This update simplifies if part of the model is conjugate, e.g.,
when the latent graphical model is a latent GMM, the update
can be implemented using variational Bayes updates (the
M-step). Finally, the update for the global variables of the
recognition model, i.e., φψ and φπ, can be obtained using
(9) where the gradients are computed using the computation
graph of the recognition model. This is also easy since the
recognition model is conjugate.

4. Discussion
We proposed a new variational inference method that
uses structured-recognition model for local variables. Our
method simplifies inference by pushing all the difficult
computation to the recognition model. By choosing a
conditionally-conjugate recognition model, we simplify the
difficult computation which ultimately reduces to sampling
from the recognition model. This sampling plays a role very
similar to the E-step in the EM algorithm or a local variable
update in SVI. Given samples from the recognition model,
we greatly simplify the update of global variables. For ex-
ample, if part of the model is conditionally-conjugate, then
mean-field implementation can be used to perform natural-
gradient updates (which is essentially a step in SVI). For

the non-conjugate parts, we use stochastic gradients. More-
over, for deterministic parameters, we recover the adaptive-
gradient like updates.

We also established that CVI can be used as an adaptive-
gradient method, thereby connecting natural-gradients to
adaptive-gradients. We discussed application to a specific
type of local variable structure. It is possible that our method
is useful for more general structures. For example, this work
could be extended to capture dependencies between global
and local variables in graphical models. It is also possi-
ble to obtain natural-gradient updates for φ by imposing a
distribution on φ that takes the same form as θ and γ.
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