Learning-Algorithms from
Bayesian Principles

Mohammad Emtiyaz Khan

RIKEN Center for Al Project, Tokyo
http://emtiyaz.github.io

SR



NeurlPS 2019 Tutorial on

“Deep Learning with Bayesian Principles”

SlidesLive o (Comm

Fretegsional Comfererncs Racording

TOPICS X

" Bayesian learning Deep learning

' 1. Inroecuchion
-4 ’

& , ) Bayesian modals Ceep models
b‘ ’ v alk: Do eenirg with » ) R
™ . Bavesian Pir a;.h: Ly. "

Bayesan inlarence Stochastic fraining
3. The Goalof My Rescarch | :
’ 4. lluran Learning atthe age of
- l R _m“
- : Pangic iege datn and pempley meces?

5. Bawesian lgamng notegqual 10

Scalabie raining ¥
Deen learn) AN

—

h. Bingng tha two tagethar

Deep Learning with Bayesian Principles
by Mohammad Emtiyaz Khan © Dec 9, 2019 - 4733 vlews « NeurlPS



https://slideslive.com/38921489/deep-learning-with-bayesian-principles

The Goal of My Research

“Jo understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”



Human Learning at
the age of 6 months.




Converged at the
age of 12 months




Transfer
skills

at the age
of 14
months




Bayesian
Human learning £ Deep learning

Life-long learning from Bulk learning from a
small chunks of datain  large amount of data in
a non-stationary world a stationary world

My current research focuses on reducing this gap!

Parisi, German I., et al. "Continual lifelong learning with neural networks: A review." Neural Networks (2019)

Friston, K. "The free-energy principle: a unified brain theory?." Nature reviews neuroscience (2010)
Geisler, W. S., and Randy L. D. "Bayesian natural selection and the evolution of perceptual
systems." Philosophical Transactions of the Royal Society of London. Biological Sciences (2002)



Learning-Algorithms from Bayesian
Principles

Bayesian principles as a general principle

— To design/improve/generalize learning-algorithms
— By computing “posterior approximations”

Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc
Design new deep-learning algorithms

— Uncertainty, data importance, life-long learning

Impact: Everything with one common principle.



Deep Learning
VS
Bayesian Learning



Deep Learning (DL)

Frequentist: Empirical Risk Minimization (ERM) or
Maximum Likelihood Principle, etc.

N
m@in ((D,0) = Z[y’b — fo(x)]? + 070
Loss t 1% P K
Data Delep
Model Params Network

DL Algorithm: 6 <+ 6 — pH, "V /()

Scales well to large data and complex model, and
very good performance in practice.



Input 2

10

Which is a good classifier?

Input 1
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Which is a good classifier?

“What the model
does not know”

12



Sequential Bayesian Inference

To© Gogn p(Dq1|0)p(0
& O )0
T o(D1[0)p(0)d0

Set the prior to the previous
posterior and recompute:

_ p(D2|0)p(0]|D1)
| p(D2|0)p(0|Dy)do

p(9|p27 Dl)

The global property enables sequential update

13



Bayesian learning Deep learning

Integration (global) Differentiation (local)
p(D|6)p(0) 1
p(0|D) = 6«6 H, "Vol(6

B 3
Can handle large data and complex models?
Scalable training? x

Can estimate uncertainty? v

X X (s«

Can perform sequential / active /online / /
incremental learning?

14



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

15



Input 2

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

Bayes for ImageNet

VOGN, an Adam-like algorithm, for uncertainty

Iteration 1

Input 1

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Bayesian principles to derive
Learning-Algorithms

Main ideas: Introduce “posterior approximations”
and the “Bayesian learning rule” to estimate them

Complex < >  Simple

Gradient
Bayes’ rule Ensemble Newton pageent

17



Exponential Family Approximations

Natural Sufficient Expectation
parameters Statistics parameters
| | |
T L
a(6) o< exp [A T<9>] = E,[T(6)
N(Om,S™1) o exp ( 1506 — ]
T <S )
X exp Sm 0+ Tr 5
" Gaussian distribution q(0) :=N(0m,S™ 1) )
Natural parameters A= {Sm,—5/2}
_ Expectation parameters i := (E,(0),E,(00")} )

18



Bayesian Learning Rule

min ¢() vs min E, g [£(0)] — H(q)
0 g€ e Entropy
Deep Learning algo: § « 0§ — pH, ' Vy((6)

Bayes learning rule: A <— X\ — oV, (E,[¢(0)] — H(q))

| |
Natural and Expectation parameters of
an exponential family distribution g

Deep Learning algorithms can be obtained by
1. Choosing an appropriate approximation g,
2. Giving away the “global” property of the rule

1. Khan and Lin. "Conjugate-computation variational inference: Converting variational inference in non-

conjugate models to inferences in conjugate models.” Alstats (2017). 19



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.
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Gradient Descent from Bayes

Gradient descent: ¢ <— 0 — pV4(0)
Bayes Learn Rule: m < m — pV,,£(m)
[ “Global” to “local’| 1M <= M — pV 1 g [£(6)]
Eg[(0)] = (m) | X« X\ — pV, (E,[6(6)] — H(q))
Derived by choosing Gaussian with fixed covariance

" Gaussian distribution q(0) := N(m, 1) A Using
Natural parameters Ai=m stochastic
Expectation parameters 1 := Eq[0] = m gradients,

_Entropy H(q) :=log(2m)/2 | we get SGD

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2019) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf) 21



https://emtiyaz.github.io/papers/learning_from_bayes.pdf

Newton’s Method from Bayes
Newton’s method: 6 < 6 — H, " [Val(0)]

(Sm — (1 —=p)Sm — pVg, (9)Eq[€(0)]
59 = AP T o YD)
e N— U (LW (B, E®q) (—V.H(g) =)

Derived by choosing a multivariate Gaussian
1 R
)

[ Gaussian distribution ¢(8) := N (6|m, S
Natural parameters A= {Sm,—S/2}
_ Expectation parameters 1. := {Eq(0),Eq(00")} )

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018). 29



Newton’s Method from Bayes

Newton’s method: 6 < 6 — H, ' [V/(0)]
Set p=1toget m <+ m — H_ [V, 0(m)]

‘m < m - pS™ Vil (my [“Global” to “Iocal’}

S (1—p)S+pH, Eq[£(6)] ~ £(m)

Express in terms of gradient and Hessian of loss:
Vi, (6)Eq[0(0)] = By[V(6)] — 2E,[Ho]m

Vi, 007)Eq[€(0)] = Eq[Ho)

[Sm — (1 —p)Sm — pVi, 9)Eq[£(0)] J
S+ (1—p)S— pQVEq(eeT)EqW@)]

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
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RMSprop/Adam from Bayes

Bayesian Learning rule for
RMSprop multivariate Gaussian

s (1=p)s+p[VUO)]* S« (1—p)S+ p(Ho)
0 < 60— a(\/s+ 5)_166(9) m +— m — oS 'Vel(0)

To get RMSprop, make the following choices
* Choose Gaussian with diagonal covariance
* Replace Hessian by square of gradients

* Add square root for scaling vector

For Adam, use a Heavy-ball term with KL
divergence as momentum (Appendix E in [1])

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).



Summary

* Gradient descent is derived using a Gaussian with fixed
covariance, and estimating the mean

* Newton’s method is derived using multivariate Gaussian
* RMSprop is derived using diagonal covariance

* Adam is derived by adding heavy-ball momentum term
* For “ensemble of Newton”, use Mixture of Gaussians [1]

* To derive DL algorithms, we need to switch from a
“global” to “local” approximation E,[/(0)] ~ ¢(m)

* Then, to improve DL algorithms, we just need to add
some “global” touch to the DL algorithms

. Lin, Wu, Mohammad Emtiyaz Khan, and Mark Schmidt. "Fast and Simple Natural-Gradient Variational
Inference with Mixture of Exponential-family Approximations." ICML (2019).
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.



Learning-Algorithms from Bayesian
Principles
Bayesian learning rule: A < A\ — oV, (E,[¢(0)] — H(q))

Given a loss, we can recover a variety of learning
algorithms by choosing an appropriate g

— Classical algorithms: Least-squares, gradient descent, Newton’s
method, Kalman filters, Baum-Welch, Forward-backward, etc.

— Bayesian inference: EM, [Laplace’s method, SVI, VMP.
— | Deep learning: SGD, RMSprop, Adam.

— Reinforcement learning: parameter-space exploration, natural
policy-search.

— Continual learning: Elastic-weight consolidation.
— Online learning: Exponential-weight average.

— Global optimization: Natural evolutionary strategies, Gaussian
homotopy, continuation method & smoothed optimization.

1. Khan and Rue. “Learning-Algorithms from Bayesian Principles” (2019) (work in progress, an early draft
available at https://emtiyaz.github.io/papers/learning_from_bayes.pdf)
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

28



Uncertainty Estimation for Image

segmentation
Uncertainty

e {1 — 7 17

o l{ g 3 ] b
SN VIRE S o
N 4 | S
> X }-

4 ' p-l
A K
N o £

F e i

i |

Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics." CVPR. 2018.
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Scaling up VI to ImageNet

VOGN, an Adam-like algorithm, for uncertainty

Iteration 1

Entropy (VOGN)

10 10
5-- 5
™~ ™
5 5
2 0- g0
-5- B et -5
& — Adam
rf. —— VOGN | |
: ‘ -5
-5 0 5
Input 1 Input 1

0.68

0.66

0.64

0.62

0.60

0.58

0.56

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Variational Online Gauss-Newton

* Improve RMSprop with the Bayesian “touch”
— Remove the “local” approximation E,[¢(0)] =~ ¢(m)
— Use a second-order approximation
— No square root of the scale

* Improve VOGN by using deep learning tricks

— Momentum, batch norm, data augmentation etc

RMSprop VOGN
g < V() g < V(0), where 0 ~ N (m,o?)
s« (1 —p)s+ pg° s (1= p)s+ p(Zig;)
0+ 0—a(/s+d) g mem—als+) " Vel(0)
0% (s+~)7 !

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).
2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).



Adam to VOGN

“Adam” to “VOGN” in two lines of code change.

import torch
+import torchsso

train_loader = torch.utils.data.DataLoader({train_datasct)
vodel = MLP()

-optimizer = torch.optim.Adam{model.parameters())
+optimizer = torchsso.optim.VOGN(model, dataset_size=len(train_loader.dataset))

Available at https://github.com/team-approx-bayes/dl-with-bavyes

Uses many practical tricks of DL to scale Bayes

1. Khan, et al. "Fast and scalable Bayesian deep learning by weight-perturbation in Adam." ICML (2018).

2. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Image
Segmentation

Uncertainty
(entropy of
class probs)

(By Roman Bachmann)3:



VOGN on ImageNet

State-of-the-art performance and convergence rate,
while preserving benefits of Bayesian principles

707

> 60}

>

O

(©

3 50+

(©)

(0]

S 40t

S —— SGD

f_g 30¢ —— Adam

—— VOGN

20 20 40 60 80

epoch
1. Osawa et al. “Practical Deep Learning with Bayesian Principles.” NeurlPS (2019).
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Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.

35



Importance of Data Examples

Which examples are most important for the
classifier”? Red circle vs Blue circle.




Model view vs Data view

Bayes “automatically” defines data-Importance

Data
view
] .I.. O °‘
e s 5
-'. [] ¢
° O ? :"‘
« G,

(By Roman Bachmann)



DNN to GP

DNN Posterior Approx.

¢4 (x)

1. Khan et al., Approximate Inference Turns Deep Networks into Gaussian Processes, NeurUPS, 2019
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“Global” to “Local”

Posterior approximations connect “global’
parameters (e.g. DNN weights) to “local”
parameters (e.g. data examples)

N
E 1
Z yzaf@ X ) ~~ Z _Q[gz _ sz(CIZ‘Z)TQ]Q
—+ neural network 1=1 IZ | |

“Dual” variables

The local parameters can be seen as “dual”
variables that define the “importance” of the data

1. Khan et al. "Fast dual variational inference for non-conjugate latent gaussian models." ICML (2013).

2. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019).
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Most Important

Least Important
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Least Important

Most Important

41



Similarity (Kernel) Matrix

O~ MI O IO b XN o

VWA HLWN~O

I 3e+4

2e+4
le+4
Oe+0

-le+4

-2e+4

-3e+4

Kij = ¢; ¢;

For DNN, with a
specific Gaussian
approximation,
we obtain Neural
Tangent Kernel

1. Khan et al. "Approximate Inference Turns Deep Networks into Gaussian Processes." NeurlPS (2019). 4



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.
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Principle is Broken: Better

Approximation don’t give better results!

0.80

o
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=
3
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Validation accuracy

0.65

I N o)
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3 —F—— Sew
"""""""" o S
% 5 .6 © o

Taskl Task?2 Task3 Task4 Taskb Task6
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VOGN improves the gap

0.80

o
~3
ot

0.70

Validation accuracy

0.65

(o)
I R - O
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: —§—— 8 ovoL
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% 8 9 Q Si
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Functional Regularization of
Memorable Past (FROMP)

ldentify, memorize, and regularize the past using
Laplace Approximation (similar to EWC)
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Validation accuracy

FROMP improves over EWC!

080 ©O |
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5 VOGN
0.75 é —é— o] VCL
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Validation accuracy

FROMP improves over EWC!

0.80| © Q 0
— ©  © FROMP
O VOGN
0.75 g 0 —“'é“' o) = VCL
Q- 5 Q EWC
0.70 % 8 .8 o o S
________ ----Separate
? —Joint
0.65

Taskl Task?2 Task3 Task4 Taskb Task6
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Active Deep Learning

Select “Important” examples while training with Adam

Epoch 0

(By Roman Bachmann)



Deep Learning with Bayesian
Principles

Bayesian principles as common principles

— By computing “posterior approximations”
Derive many existing algorithms,

— Deep Learning (SGD, RMSprop, Adam)

— Exact Bayes, Laplace, Variational Inference, etc

Design new deep-learning algorithms
— Uncertainty, data importance, life-long learning

Impact: Many learning-algorithms with a
common set of principles.



Open Challenges

Deep Learning + Bayes Learning

— Principles of “trial and error” and “bayes”
together

How to achieve Life-long deep learning?
How to compute better posterior approx?
How to compute higher-order gradients?



Towards Life-long learning

* For life-long learning, we need
— Perception: how you want to see the world?
— Action: what you want to see in the world?
* Posterior approximation connects the two
— Models are representation of the world
— Approximations are representation of the model
— They help us learn the model through actions
— Act to appropriately “fill” the data space

1.Friston, K. "The free-energy principle: a unified brain theory?." Nature neuroscience (2010)
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Learning-Algorithms from
Bayesian Principles

Coming soon!
A preliminary version is at

https://emtiyaz.github.io/papers/
learning_from_bayes.pdf

Havard Rue (KAUST)
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz khan@riken jn

Abstraci—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep nenral networks.
Variational inference circumvents thes: challenges by formulating
Bayeslan Inference as an optimization problem and solving it
using gradient-based optimization. In this paper. we argue in
faver of netural-gradient approaches which, unlike their gradien!-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. Ve show how to derive fast
yet simple natural-gradient updates by using a duoality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are zble
to extract accurate local approximations for individua! model
compoenents. We summarize recent results for Bayesian deep
leaming showing the superiority of natural-gradient approaches
over their gradient counterparts,

Indesx Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
eaponential-family distribulivns, nonconjugate models,

Didrik Nielsen
RIKEN Center for Advanced Intelligence Preject
Tokyo, Japan
didnk nielken @nker jp

prove the rate of convergence |/]-{Y]. Unlfortunately, thes:
approaches only apply to a restricted class of models known
as condirionally-confugare models, eénd do not work for non-
conjugare models such as Bayesian neural networks

This paper discusses svne recent methods that generalize
the use of natural gradiznts to such large aad complex non-
conjugare models. We show that, for exponential-family ap-
proxirmations, a duality between their natural and expectation
parametar spaces enables a simple natural gradient update.
‘T'he resulting updates are equivalent to a rzeently proposed
meathod callec Conjugate-compatation Variational Inference
(CVI) [10]. An auractive feature of the method 1s that it
nzturally ohtaing locas exponential-family approximatiors for
individual mudel components. We discuss the applicauon
of the CVI method to Bayesian neural networks énd show
some recent results from a recent work [11] cemonstiating
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