

Generating Image Distortion Maps Using Convolutional Autoencoders with Application to No Reference Image Quality Assessment Sumohana S. Channappayya IIT Hyderabad @ AIP-IITH Joint Workshop on Machine Learning and Applications IIT Hyderabad

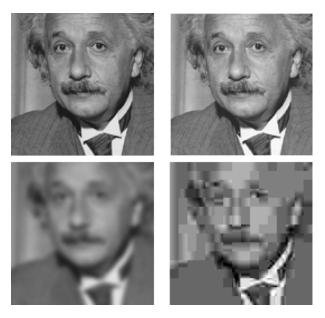
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgments

1. Students: Dendi Sathya Veera Reddy (EE PhD Scholar), Chander Dev (EE BTech), Narayan Kothari (EE BTech)

2. Drs. Srijith and Vineeth for the invitation

Introduction and Motivation



・ロト・西ト・西ト・日・ の々ぐ

Image Quality Assessment – The Why

What's wrong with using MSE for IQA?

- Poor correlation with mean opinion score (MOS) of subjective evaluation.
- Global measure of error.
- Why is MOS important?
 - Majority of multimedia content intended for human consumption.
 - Gold standard for quality evaluation.
- Why not use MOS then?
 - Expensive, time-consuming (non-real-time), large data volume.

Image Quality Assessment – The Why

An important problem for both the academia and the industry.

- An open research problem with several flavors!
- Immediate practical applications with economic impact.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Image Quality Assessment – The How

Flavors of Image Quality Assessment:

- ► Full reference (FR): Pristine reference image and image under evaluation are both available.
- Reduced reference (RR): Partial information about pristine reference image and test image available for comparison.

► No reference/Blind (NR/B): Only test image available! Assumption: Working with natural scenes meant for human consumption.

Image Quality Assessment – The How

The turning point in FR – The Structural Similarity (SSIM) Index [1].

- *Hypothesis:* distortion affects local structure of images.
- Modern, successful approach: measure loss of structure in a distorted image.
- Basic idea: combine local measures of similarity of luminance, contrast, structure into local measure of quality.
 SSIM_{I,J}(i,j) = L_{I,J}(i,j)C_{I,J}(i,j)S_{I,J}(i,j) where

Perform weighted average of local measure across image.

Image Quality Assessment – SSIM Map

- Displaying SSIM(i, j) as an image is called an SSIM Map. It is an effective way of visualizing where the images I, J differ.
- The SSIM map depicts where the quality of one image differs from the other.

Correlation (SROCC) with DMOS on LIVE dataset – PSNR (L samples): 0.8754, SSIM: 9129.

Image Quality Assessment – SSIM Map Example

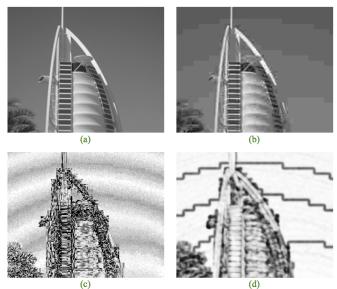


Figure: a: Reference; b: JPEG; c: Absolute diff; d: SSIM map

(日)

- ∢ ≣ →

Image Quality Assessment – SSIM Map Example

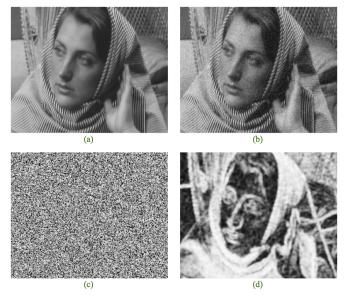
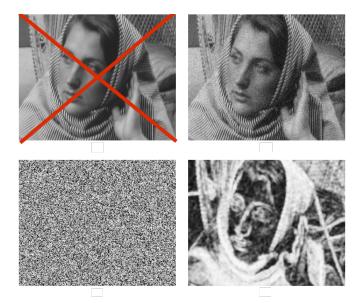


Figure: a: Reference; b: AWGN; c: Absolute diff; d: SSIM map

No-reference Image Quality Assessment



No-reference or Blind Image Quality Assessment (NR/BIQA)

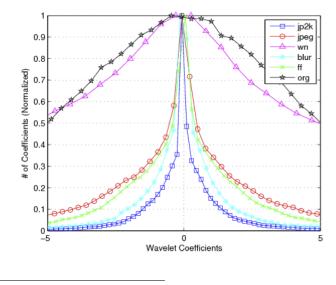
• Pristine reference image not available for comparison.

- Distortion information used.
- Opinion information used.
- An open problem

Representative Examples of No-reference Image Quality Assessment

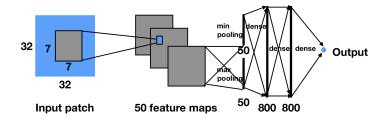
- Unsupervised Learning: Natural Image Quality Evaluator (NIQE) [2]
- Supervised Learning: Convolutional Neural Networks for No-Reference Image Quality Assessment [3]

Unsupervised Learning: Natural Image Quality Evaluator (NIQE) [2]



¹Source: Moorthy and Bovik, IEEE TIP 2011.

Supervised Learning: Convolutional Neural Networks for No-Reference Image Quality Assessment [3]



Architecture of the CNN used for NRIQA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Challenges in NRIQA

- Databases are small compared to typical computer vision databases
- Constructing large databases is challenging
- Standard databases employ synthetic distortions
- Databases with realistic distortions are few
- Realistic distortions mean reference images (and scores) not available

Generation of localized distortion maps

Proposed Approach: Distortion Map Generation

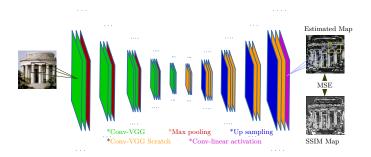


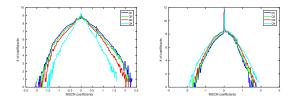
Figure: Architecture of DistNet

イロト イポト イヨト イヨト

э

Proposed Approach: NRIQA using Distortion Map

- Approach 1: Simple weighted averaging
- Approach 2: Statistical modeling of normalized map coefficients and supervised learning



 Approach 3: Supervised learning using spatial statistics [11] plus average map score

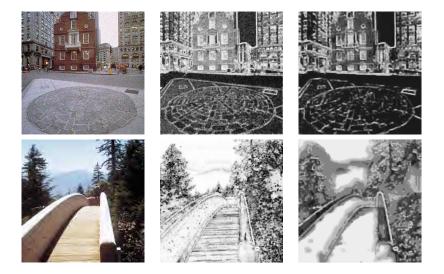
Implementation Details

DistNet

- 120 natural images
- Distortions: JPEG, JP2K, AWGN, Gaussian blur. 5 levels each
- 2400 distorted images and corresponding SSIM maps used for training and validation (80:20)
- Preprocessing: mean subtraction and variance normalization
- NRIQA
 - Evaluated over 7 IQA databases: 5 synthetic distortions and 2 authentic distortions

 Performance evaluated using linear correlation coefficient (LCC) and rank ordered correlation coefficient (SROCC)

Results: DistNet



Results: NRIQA

	LIVE II [4]		CSIQ [5]		TID 2013 [6]		LIVE MD [7]		MDID 2013 [8]	
	LCC	SRCC	LCC	SRCC	LCC	SRCC	LCC	SRCC	LCC	SRCC
NFERM [9]	0.95	0.94	0.78	0.70	0.50	0.36	0.94	0.92	0.90	0.89
BLIINDS-II [10]	0.93	0.92	0.83	0.78	0.61	0.53	0.92	0.91	0.92	0.91
BRISQUE [11]	0.94	0.94	0.82	0.77	0.54	0.47	0.93	0.90	0.89	0.87
DIIVINE [12]	0.89	0.88	0.79	0.76	0.60	0.51	0.72	0.66	0.45	0.45
NIQE [2]	0.91	0.91	0.71	0.62	0.43	0.32	0.77	0.84	0.57	0.57
IL-NIQE [13]	0.91	0.90	0.85	0.81	0.65	0.52	0.88	0.89	0.51	0.52
QAC [3]	0.87	0.87	0.66	0.55	0.49	0.39	0.66	0.47	0.15	0.19
DistNet-Q1	0.88	0.86	0.80	0.79	0.30	0.30	0.60	0.55	0.44	0.38
DistNet-Q2	0.91	0.92	0.87	0.85	0.69	0.62	0.91	0.84	0.87	0.85
DistNet-Q3	0.95	0.95	0.91	0.88	0.82	0.79	0.89	0.84	0.90	0.89

<□ > < @ > < E > < E > E のQ @

Results: NRIQA Performance on Authentic Distortions

	LIVE	Wild [14]	KonIQ-10K [15]		
	LCC	SRCC	LCC	SRCC	
NFERM [9]	0.42	0.32	0.25	0.24	
BLIINDS-II [10]	0.48	0.45	0.58	0.57	
BRISQUE [11]	0.60	0.56	0.70	0.70	
DIIVINE [12]	0.47	0.43	0.62	0.58	
NIQE [2]	0.47	0.45	0.55	0.54	
IL-NIQE [13]	0.51	0.43	0.53	0.50	
QAC [3]	0.32	0.24	0.37	0.34	
DistNet-Q1	0.30	0.24	0.25	0.21	
DistNet-Q2	0.51	0.48	0.60	0.59	
DistNet-Q3	0.60	0.57	0.71	0.70	

Results: NRIQA

Dataset	Distortion	NIQE [2]	QAC [3]	IL-	DistNet	
Dataset	Туре			NIQE [13]	-Q1	
	AWGN	0.82	0.74	0.88	0.86	
	AWGNC	0.67	0.72	0.86	0.78	
TID13 [6]	SCN	0.67	0.17	0.92	0.71	
	MN	0.75	0.59	0.51	0.56	
	HFN	0.84	0.86	0.87	0.87	
	IN	0.74	0.80	0.75	0.72	
	QN	0.85	0.71	0.87	0.58	
	GB	0.79	0.85	0.81	0.84	
	ID	0.59	0.34	0.75	0.32	
	JPEG	0.84	0.84	0.83	0.89	
	JP2K	0.89	0.79	0.86	0.77	

Concluding Remarks

- Reference-less distortion map estimation
- Application to NRIQA
- Opens up several other potential applications such as NRVQA

- Better distortion map estimation techniques can be explored
- Accepted to IEEE Signal Processing Letters

Key References

- Wang et al., Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, 2004
- 2. Kang et al., Convolutional Neural Networks for No-Reference Image Quality Assessment, IEEE CVPR 2014.

3. Mittal et al., Making a 'Completely Blind' Image Quality Analyzer, IEEE Signal Processing Letters, 2013

CNNs for NRIQA Explained

- Relies on the ability of neural networks to capture non-linearities
- The convolutional layer directly accepts image input $\hat{l}(i,j) = \frac{l(i,j)-\mu(i,j)}{\sigma(i,j)+1}$ l(i,j): pixel at location (i,j) $\mu(i,j)$: local mean $\sigma(i,j)$: local standard deviation
- Input patch size: 32 × 32
- Convolutional layer size: 26 × 26 (50)
- Dimensionality reduction: min pooling and max pooling
- ► Non-linearity: Rectified Linear Unit (ReLU) g = max(0, ∑_i w_ia_i)

SROCC with DMOS on LIVE dataset – PSNR: 0.8636, SSIM: 9129, RRED: 0.9343, CNN: 9202.

Unsupervised Learning: Natural Image Quality Evaluator (NIQE) [Mittal et al. 2013]

Statistical modeling of normalized pixels

- ► Hypothesis: distortion affects pixel statistics of natural scenes
- Measure this change to estimate distortion
- Models normalized pixel statistics using a Generalized Gaussian Density (GGD)
- Modeling model parameters using a Multivariate Gaussian Density (MVD)

SROCC with DMOS on LIVE dataset – PSNR: 0.8636, SSIM: 9129, RRED: 0.9343, NIQE: 9135.

NIQE Highlights

- Completely unsupervised algorithm: opinion unaware and distortion unaware
- ► Features based on a *fundamental property* of natural scenes

- Operates in in the *pixel domain*
- Delivers excellent performance and is very fast