Statistics & Machine Learning in Astrophysics

Shantanu Desai
Department of Physics, IIT Hyderabad

Riken-AIP/IITH workshop on machine learning
March 15-16, 2019
Collaborators/Thanks

P.K. Srijith, Suryarao Bethapudi, Aisha Dantuluri, Anirudh Jain, Rahul Maroju, Sristi Ram Dyuthi, Anumandla Sukrutha, Soham Kulkarni, Aishwarya Bhave (NIT Raipur), Anirudh Jain (ISM Dhanbad), Tejas P., Shalini Ganguly, Ashwani Rajan (IIT Guwahati) Dawei Liu (Houston U.), Ben Hoyle (LMU), Markus Rau (CMU) Dark Energy Survey Collaboration, etc.

“One normally associates statistics with large numbers and astronomy is full of large on to believe that increased interaction between statistics and astronomy will be of benefit to both subjects”

J.V. Narlikar to C.R. Rao
Rise of Bayesian analysis in astro literature

Fig. 1 Simple bibliometrics measuring the growing use of Bayesian methods in astronomy and physics, based on queries of the NASA ADS database in October 2011. Thick (blue) curves (against the left axis) are from queries of the astronomy database; thin (red) curves (against the right axis) are from joint queries of the astronomy and physics databases. For each case the dashed lower curve indicates the number of papers each year that include “Bayes” or “Bayesian” in the title or abstract. The upper curve is based on the same query, but also counting papers that use characteristically Bayesian terminology in the abstract (e.g., the phrase “posterior distribution” or the acronym “MCMC”); it is meant to capture Bayesian usage in areas where the methods are well-established, with the “Bayesian” appellation no longer deemed necessary or notable.

arXiv:1208.3036
Rise of MCMC analysis in astro literature

Figure 2
Percentage of articles in Arxiv astro-ph abstracts containing the word Bayesian (left) and MCMC (right). Computed using the code arxiv.py, courtesy Dustin Lang.

arXiv:1706.01629
Rise of ML analysis in astro literature

Figure 1. Machine learning related papers on the NASA/ADS archive from 2006 to today.

About 90 astro-ph papers with deep learning in abstract after 2014

arXiv:1901.05978
Astronomy in the by-gone era
~ 1930s
Where (optical) astronomy is today

Large Synoptic Survey Telescope (2022+)
- Mirror Size ~ 8.4 m
- Camera 3.2 Gigapixels
- Field of view 10 sq. degrees
- 30 TB of raw data per night
- Total raw data + catalogs ~ 100 PB!

Dark Energy Survey (2013-19)
- Mirror Size ~ 4m
- Camera 570 pixels
- Field of view 3 sq deg.
- Total data volume 2 PB!
Statistical tasks in Astrophysics

Photometric Redshifts (Regression)
Star/Galaxy classification
Source Classification
Dimensionality Reduction/Visualization
Clustering
N-point statistics
Dealing with censored and truncated data
Transient and Outlier Detection
Density Estimation
Matched Filtering
Source Extraction
(Fast) Cross-Matching
Data/Image Compression
Model Comparison
Forecasts using Fisher matrices
MCMC Methods and alternatives (for parameter estimation)
Nested Sampling Techniques
Cosmic Ray and other artefact removal from images
Time-Series and Time-frequency analysis
Looking for periodicities
Applications of Machine Learning to astronomy

In the context of astronomy, ML is used to:

- Describe complicated relationships
- Identify data clusters and data outliers
- Reduce scatter by using complex or subtle signals
- Generate simulated data
- Classify objects
- Address sparse data
- Explore datasets to understand the physical underpinnings
Photometric Redshifts

Distance to objects:
Background universe expands and "stretches" light wave and shifts spectra to longer wavelengths

Fluxes (or magnitudes) in photometric bands are predictors for redshift (distance)

Credit: Markus Rau
How can I use Machine Learning for photoZs?

- **Calibration data** from overlapping region of spectroscopic survey and photometric survey

 color-mag. space spec.-photo. data

 - Train model

 - Apply model

 - **KNOWN redshift**

 - **ESTIMATED redshift** (PhotoZ)

- PhotoZs can be obtained for all other galaxies of the photometric survey

Credit: Markus Rau
Snapshot of problems in photoz involving ML

Feature importance for machine learning redshifts applied to SDSS galaxies

Ben Hoyle1,2, Markus Michael Rau1, Roman Zitlau1, Stella Seitz1,3, Jochen Weller1,2,3

Stacking for machine learning redshifts applied to SDSS galaxies

Roman Zitlau1, Ben Hoyle1, Kerstin Paech1, Jochen Weller1,3,3
Markus Michael Rau1,3,3, Stella Seitz1,3

Measuring photometric redshifts using galaxy images and Deep Neural Networks

Ben Hoyle

Anomaly detection for machine learning redshifts applied to SDSS galaxies

Ben Hoyle1,2, Markus Michael Rau1,4, Kerstin Paech1,2, Christopher Bonnett3
Stella Seitz1,4, Jochen Weller1,2,4

Deriving Photometric Redshifts using Fuzzy Templates and Self-Organizing Maps. II. Comparing Sampling Techniques Using Mock Data

Joshua S. Speagle1,2,* and Daniel J. Eisenstein1
1Harvard University, Department of Astronomy, 60 Garden St., MS 26, Cambridge, MA 02138, USA
2Kavli IPMU (WPI), UTIAS, The University of Tokyo, Komaba-machi 5-1-5, Kashiwa, Chiba, Japan
*Corresponding author.
Removal of cosmic rays/satellite trails from images

SD et al (arXiv:1601.07182)
Parameters estimation/Regression

MCMC methods used to calculate 68%, 90%, etc credible intervals on various parameters using Bayesian regression techniques.

Workhorse software used for MCMC in Astronomy is **emcee**

http://dfm.io/emcee/current/
(2423 citations, including outside astro)

Exploring alternatives to MCMC, such as

Variational Inference for parameter estimation

Jain, Srijith, SD, arXiv:1803.6473

Nested sampling techniques for calculating Bayesian evidence
Two-point (n-point) correlation functions

\[dP_{12} = \rho^2 dV_1 dV_2 (1 + \xi(r)) \]

\(\xi(r) \) is called two-point correlation function

CUTE solutions for two-point correlation functions from large cosmological datasets

David Alonso

In the advent of new large galaxy surveys, which will produce enormous datasets with hundreds of millions of objects, new computational techniques are necessary in order to extract from them any two-point statistic, the computational time of which grows with the square of the number of objects to be correlated. Fortunately technology now provides multiple means to massively parallelize this problem. Here we present a free-source code specifically designed for this kind of calculations. Two implementations are provided: one for execution on shared-memory machines using OpenMP and one that runs on graphical processing units (GPUs) using CUDA. The code is available at http://members.iift.uam-csic.es/dav Clemens et al. (2005)
Model Comparison

![Graph showing comparison between different models](image)

<table>
<thead>
<tr>
<th></th>
<th>No LIV</th>
<th>(n=1)</th>
<th>(n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOF</td>
<td>35</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>χ^2/DOF</td>
<td>2.6</td>
<td>2.37</td>
<td>2.23</td>
</tr>
<tr>
<td>χ^2GOF</td>
<td>2.2×10^{-7}</td>
<td>3.7×10^{-6}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>p-value significance</td>
<td>0.0014</td>
<td>3.65σ</td>
<td>9.2σ</td>
</tr>
<tr>
<td>Δ AIC</td>
<td>8.2</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>Δ BIC</td>
<td>6.9</td>
<td>11.7</td>
<td></td>
</tr>
</tbody>
</table>

*No Lorentz Invariance

*Lorentz Invariance up to linear (n=1) order

*Lorentz Invariance up to quadratic (n=2) order
Searching for periodicities in noisy unevenly sampled data.

Lomb-Scargle periodogram

D. Liu, SD (1604.06758)
Contribution of astrophysicists to Statistics

Extension of Gaussian mixture model to incorporate errors -> "Extreme Deconvolution"

The Annals of Applied Statistics
2011, Vol. 5, No. 2B, 1657-1677
DOI: 10.1214/10-IAAS439
© Institute of Mathematical Statistics, 2011

EXTREME DECONVOLUTION: INFERRING COMPLETE DISTRIBUTION FUNCTIONS FROM NOISY, HETEROGENEOUS AND INCOMPLETE OBSERVATIONS

By Jo Bovy¹, David W. Hogg¹,² AND Sam T. Roweis³

New York University

EMPIRICISM: RE-SAMPLING OBSERVED SUPERNOVA/HOST GALAXY POPULATIONS USING AN XD GAUSSIAN MIXTURE MODEL

Thomas W.-S. Holmber¹,²,³, Philip J. Marshall¹,⁴, Lisa H. Wechsler¹,²

Draft version November 18, 2018
Incorrect use of statistics in Astronomy

How proper are Bayesian models in the astronomical literature?

Hyungsuk Tak,1* Sujit K. Ghosh,2 and Justin A. Ellis3
1Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
2Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
3Infinia ML, Durham, NC 27701, USA

ABSTRACT
The well-known Bayes theorem assumes that a posterior distribution is a probability distribution. However, the posterior distribution may no longer be a probability distribution if an improper prior distribution (non-probability measure) such as an unbounded uniform prior is used. Improper priors are often used in the astronomical literature to reflect a lack of prior knowledge, but checking whether the resulting posterior is a probability distribution is sometimes neglected. It turns out that 23 articles out of 75 articles (30.7%) published online in two renowned astronomy journals (ApJ and MNRAS) between Jan 1, 2017 and Oct 15, 2017 make use of Bayesian analyses without rigorously establishing posterior propriety. A disturbing aspect is that a Gibbs-type Markov chain Monte Carlo (MCMC) method can produce a seemingly reasonable posterior sample even when the posterior is not a probability distribution (Hebert and Casella 1996). In such cases, researchers may erroneously make probabilistic inferences without noticing that the MCMC sample is from a non-existing probability distribution. We review why checking posterior propriety is fundamental in Bayesian analyses, and discuss how to set up scientifically motivated priors.

Key words: Markov chain Monte Carlo (MCMC) – improper flat prior – vague prior – uniform prior – inverse gamma prior – non-informative prior – scientifically motivated prior

Table 1. Classification of 75 articles published online in ApJ and MNRAS between Jan 1, 2017 and Oct 15, 2017 according to their prior distributions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Jointly proper priors</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>(b) Jointly improper priors</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(c) Unclear priors</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>
Training/educational/collaborative resources in statistics for astrophysicists

- Improved access to statistical software. R/CRAN public-domain statistical software environment with thousands of functions. Increasing capability in Python.

- Papers in astronomical literature doubled to ~500/yr in past decade (“Methods: statistical” papers in *NASA-Smithsonian Astrophysics Data System*)

- Short training courses (Penn State, India, Brazil, Greece, China, Italy, France, Germany, Spain, Sweden, LSST, IAU/AAS/CASCA/... meetings)

Credit: Eric Feigelson opening lecture at Penn State astrostatistics school
AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy, and distributed under the 3-clause BSD license. It contains a growing library of statistical and machine learning routines for analyzing astronomical data in Python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets.

The goal of astroML is to provide a community repository for fast Python implementations of common tools and routines used for statistical data analysis in astronomy and astrophysics, to provide a uniform and easy-to-use interface to freely available astronomical datasets. We hope this package will be useful to researchers and students of astronomy. If you have an example you'd like to share, we are happy to accept a contribution via a GitHub Pull Request: the code repository can be found at http://github.com/astroML/astroML.
Conclusions

• Lot of synergy between Machine Learning, data mining, advanced statistical tools and Astrophysics

• Contact me or Srijith for more details.

• Compilation of interesting astrostatistics/astroinformatics papers in goo.gl/4FY9qq

Thank you for your attention!!!