IIT-H and RIKEN-AIP Joint Workshop on Machine Learning and Applications March 15, 2019

Knowledge Transfer for Visual Recognition

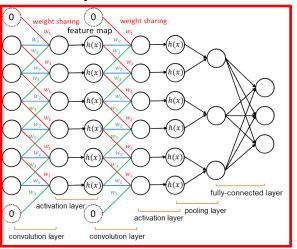
The University of Tokyo RIKEN AIP (Team leader of Medical Machine Intelligence) Tatsuya Harada

Deep Neural Networks for Visual Recognition

Applications

cellphone

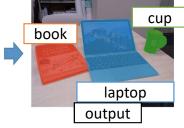
Deep Neural Networks



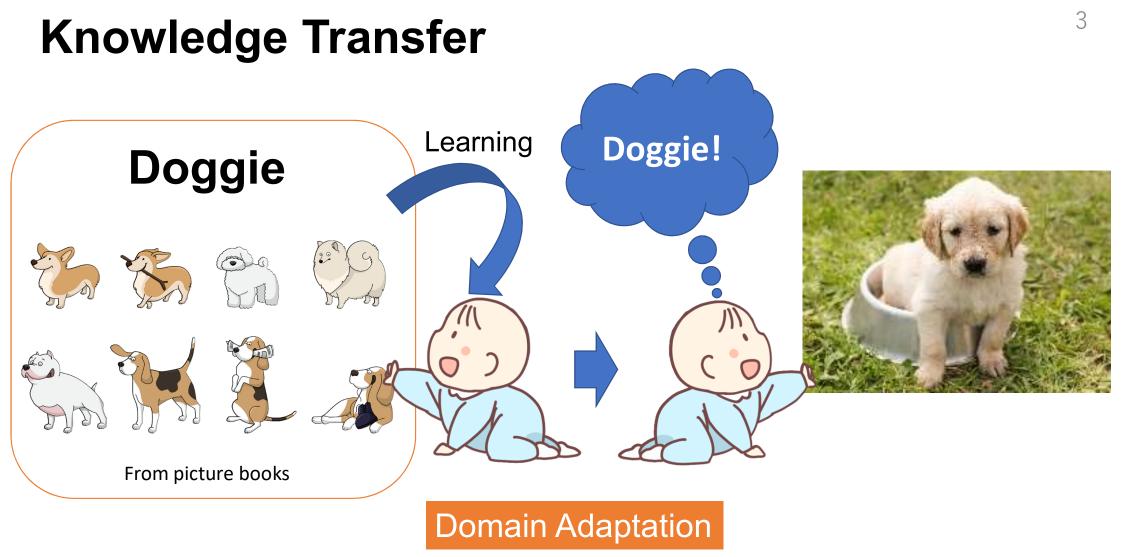
Tasks in the visual recognition field

- Object class recognition
- Object detection
- Image caption generation
- Semantic and instance segmentation
- Image generation
- Style transfer
- DNNs becomes an indispensable module.
- A large amount of labeled data is needed to train DNNs.
- Reducing annotation cost is highly required.

laptop



A yellow train on the tracks near a train station.



<a href="https://pixabay.com/ja/photos/%E5%AD%90%E7%8A%AC-%E3%82%B4%E3%83%BC%E3%83%AB%E3%83%AB%E3%83%B3-%E3%83%BB-%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%BC%E3%83%BC%E3%83%AB%E3%83%BC%E3%83%BB-%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%BC%E3%83%BC%E3%83%AB%E3%83%BC%E3%83%BB-%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%BC%E3%83%BC%E3%83%BC%E3%83%BC%E3%83%BB-%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%AA%E3%83%BC%E3%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%AA%BC%

Image by GraphicMama-team on Pixabay

Domain Adaptation (DA)

DProblems

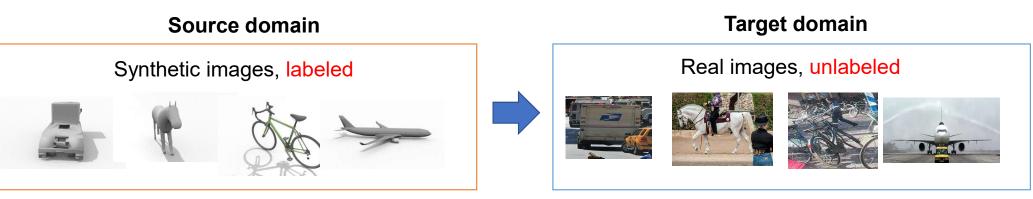
■Supervised learning model needs many labeled examples ■Cost to collect them in various domains

□Goal

- Transfer knowledge from source (rich supervised data) to target (small supervised data) domain
- Classifier that works well on target domain.

Unsupervised Domain Adaptation (UDA)

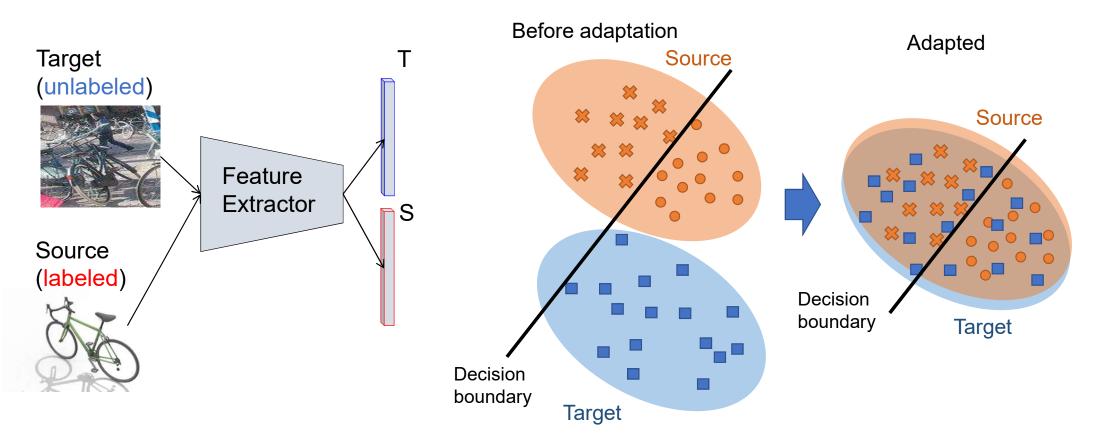
- Labeled examples are given only in the source domain.
- There are no labeled examples in the target domain.



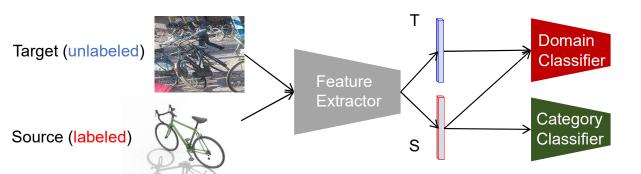
Distribution Matching for Unsupervised Domain Adaptation

Distribution matching based method

- Match distributions of source and target features
 - Domain Classifier (GAN) [Ganin et al., 2015]
 - Maximum Mean Discrepancy [Long et al., 2015]



Adversarial Domain Adaptation

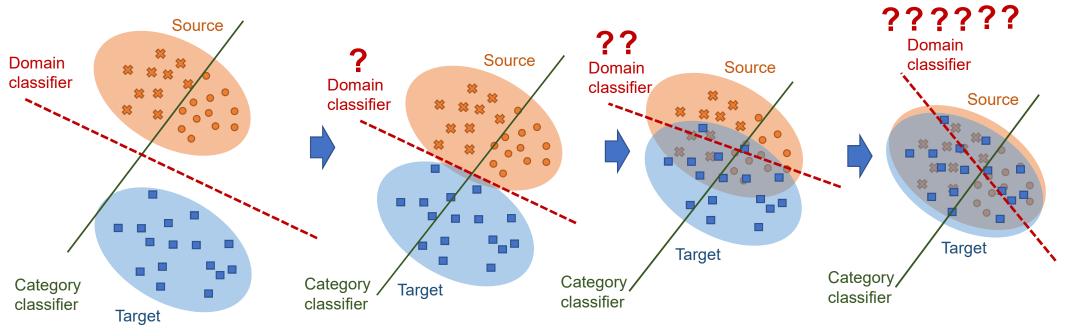


Tzeng, Eric, et al. Adversarial discriminative domain adaptation. CVPR, 2017.

- Training the feature generator in a adversarial way works well!
- Category classifier, domain classifier, feature extractor

DProblems

 Whole distribution matching
Ignorance of category information in source domain



Unsupervised Domain Adaptation using Classifier Discrepancy

Kuniaki Saito¹, Kohei Watanabe¹, Yoshitaka Ushiku¹, Tatsuya Harada^{1, 2} 1: The University of Tokyo, 2: RIKEN

CVPR 2018, oral presentation

K. Saito

K. Watanabe

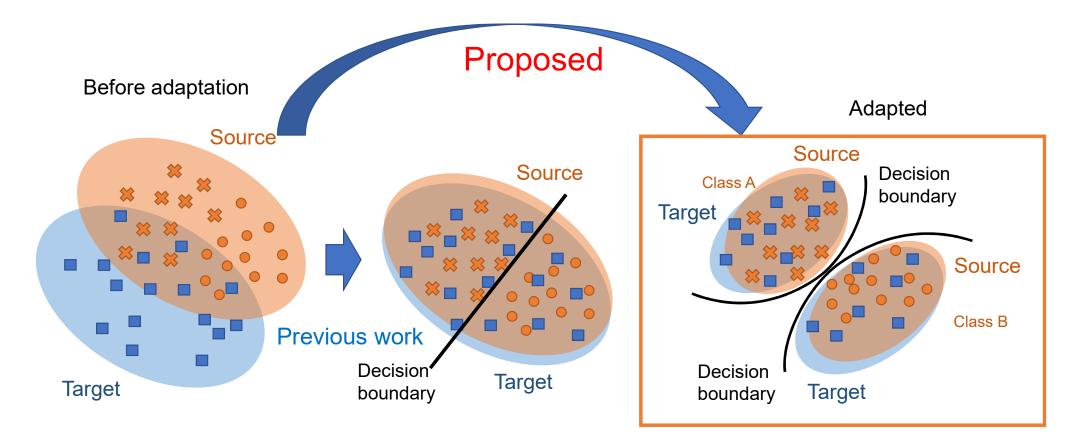
Y. Ushiku

T. Harada

Proposed Approach

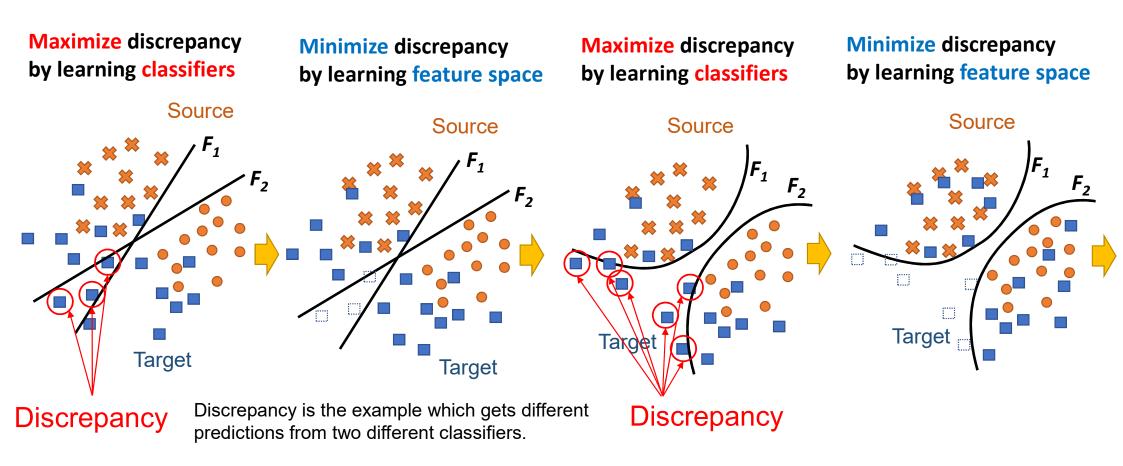
Considering class specific distributions

□Using decision boundary to align distributions

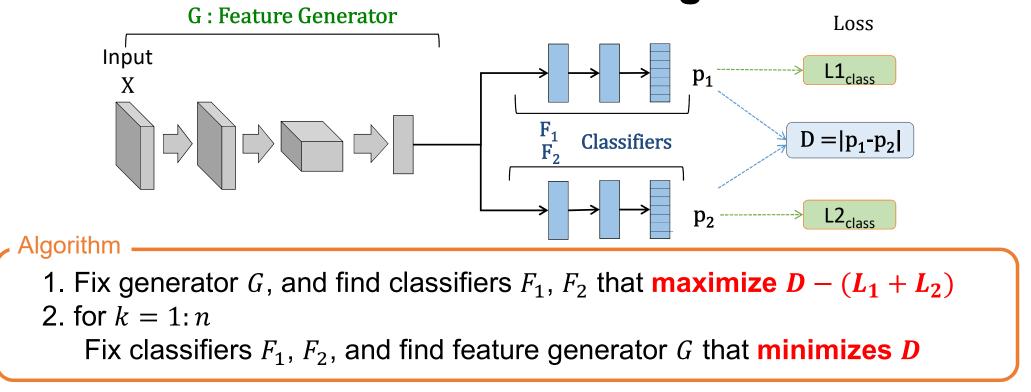


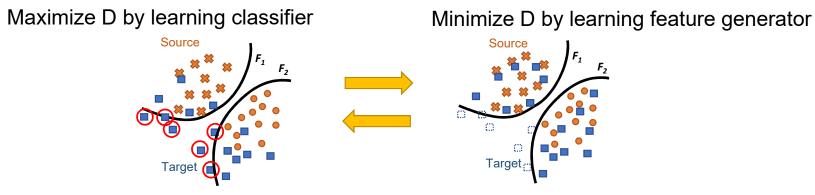
Key Idea

Maximizing discrepancy by learning two classifiersMinimizing discrepancy by learning feature space



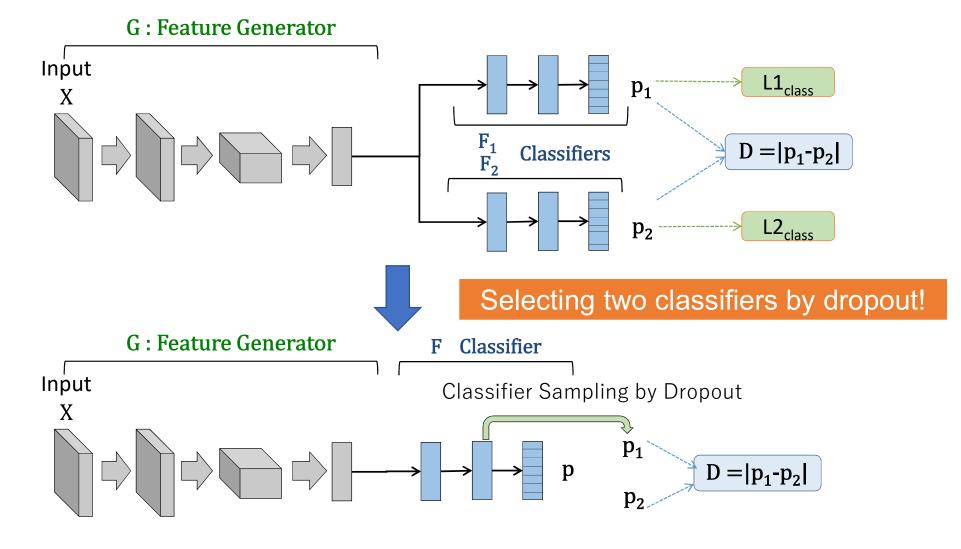
Network Architecture and Training





Improving by Dropout

Adversarial Dropout Regularization Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, Kate Saenko ICLR 2018



Object Classification

□Synthetic images to Real images (12 Classes)

□ Finetune pre-trained ResNet101 [He et al., CVPR 2016] (ImageNet)

■Source:images, Target:images

Source (Synthetic images)

Target (Real images)

Method	plane	bcycl	bus	car	hrs	knf	mcycl	prsn	plnt	sktbrd	trn	trck	mean
Source Only	55.1	53.3	61.9	59.1	80.6	17.9	79.7	31.2	81.0	26.5	73.5	8.5	52.4
MMD [Long et al., ICML 2015]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [Ganin et al., ICML 2015]	81.9	77.7	82.8	44.3	81.2	29.5	65.1	28.6	51.9	54.6	82.8	7.8	57.4
Ours $(n = 4)$	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9

Semantic Segmentation

□ Simulated Image (GTA5) to Real Image (CityScape)

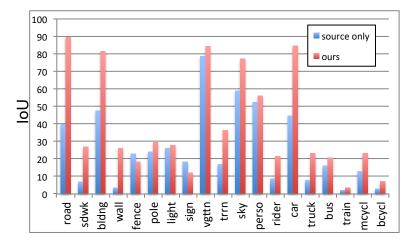
□ Finetuning of pre-trained VGG, Dilated Residual Network [Yu et al., 2017] (ImageNet)

- Calculate discrepancy pixel-wise
- □ Evaluation by mean IoU (TP/(TP+FP+FN))

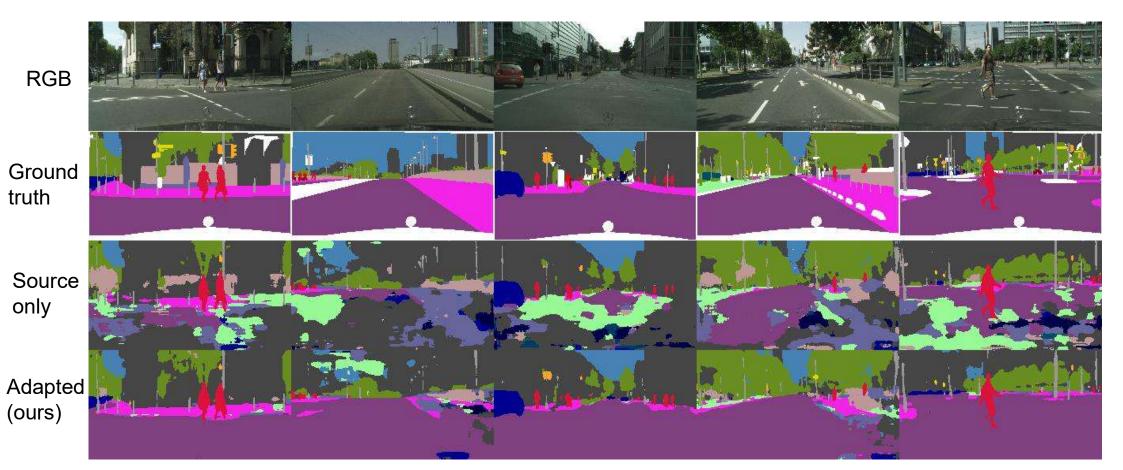
GTA 5 (Source)

CityScape(Target)

Network	Method	mIoU
VGG-16	Source Only	21.2
	FCN Wld [Hoffman et al., Arxiv 2017]	27.1
VGG-16	Source Only	22.3
	$\operatorname{CrrclmDA}$ (I) [Zhang el al., ICCV 2017]	23.1
VGG-16	Source Only	24.9
	Ours	28.8
DRN-105	Source Only	22.2
	Ours	39.7



Qualitative Results



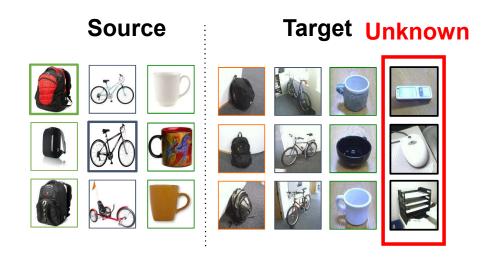
Another Topics of Unsupervised Domain Adaptation

Open-set Domain Adaptation

 Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada.
Open Set Domain Adaptation by Backpropagation.
ECCV, 2018.

□Adaptive Object Detection

 Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, Kate Sanenko. Strong-Weak Distribution Alignment for Adaptive Object Detection. CVPR, 2019.



to all south

