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The Goal of My Research

“To understand the fundamental principles of 
learning from data and use them to develop 
algorithms that can learn like living beings.”
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Human learning      Deep learning

Can we fix this?
My current research is focused on 

reducing this gap.
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Approximate Bayesian Inference

• Bayesian Learning      human learning (Tannenbaum 1999)

– Estimate posterior distribution over unknowns, 
– But computationally very difficult!

• Algorithms that generalize well-known algorithms.
• Natural-Gradient Variational Inference
– A generalization of least-squares, Newton’s method, 

Expectation Maximization, Kalman filters ….
– Also deep learning algorithms (Adam).
– Combines ideas from Bayesian Statistics, Continuous 

Optimization, Information geometry, Deep Learning.
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Uncertainty in Deep Learning

To estimate the confidence in the 
predictions of a deep-learning system
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Uncertainty for Image Segmentation
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(taken from Kendall et al. 2017)

UncertaintyPredictionTruthImage

(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
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(e) Epistemic
Uncertainty

Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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Challenges and Solution
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The data and model are both extremely large.

Bayesian solution: Estimate a distribution over theta

EntropyDistribution
(e.g. Gaussian)

Parameters
(e.g., mean 
and variance)

L(�)
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Stochastic Gradient Descent:

Natural Gradient Descent for approximate Inference

A generalization of least-squares, Newton’s method, 
Expectation Maximization, Kalman filters ….

Moments of q
(e.g. mean & correlation)

AIstats 2017



Deep learning optimizer (e.g. Adam)Variational Adam (Vadam)

Variational Adam

13

1. Select a minibatch
2. Compute gradient using backpropagation
3. Compute a scale vector to adapt the learning rate
4. Take a gradient step

 

Variance

Mean

ICML 2018



Illustration: Classification
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Logistic regression 
(30 data points, 2 

dimensional input). 
Sampled from 

Gaussian mixture 
with 2 components



Adam vs Vadam (on Logistic-Reg)
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M = 5,
Rho = 0.01, 
Gamma = 0.01

Adam
Our method 
(mean)
Our method 
(samples)



Adam vs Vadam (on Neural Nets)
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Adam
Ours
(mean)
Ours 
(samples)

(By Runa E.)



LeNet-5 on CIFAR10
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2 Empirical Evaluation

(a) MNIST (b) CIFAR10

Test
VOGN Adam

Log Loss 0.065 0.108
Error 2.109 1.079

Train
VOGN Adam

Log Loss 0.058 0.001
Error 1.718 0.026

Test
VOGN Adam

Log Loss 1.130 8.341
Error 37.01 40.47

Train
VOGN Adam

Log Loss 0.815 0.077
Error 27.18 2.248

Figure 2: Evaluation metrics on Train and Test sets for both optimizers. Adam overfits while VOGN
does a good job of keeping test and train errors close. VOGN outperforms Adam on CIFAR10 but
underperforms on MNIST for test accuracy. For test log loss, VOGN is better than Adam in both
cases. Model architectures given in Table 1.
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(By Anirudh Jain)

VOGN is our method



With BatchNorm

18(By Anirudh Jain)

After BN

Before BN



Parameter-Space Noise for Deep RL
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On OpenAI Gym Cheetah with DDPG 
with DNN with [400,300] ReLU

Vadam(noise using
 natural-gradients)

SGD (noise using 
standard gradients)

Reward 2038

Reward 5264

Ruckstriesh et.al.2010, Fortunato et.al. 2017, Plapper et.al. 2017

SGD (no noise)
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Avoiding 
Local 

Minima
An example 
taken from 
Casella and 

Robert’s book.

Vadam 
reaches the 
flat minima, 
but GD gets 

stuck at a local 
minima.

Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD 
etc.



Summary of the Talk

• Approximate Bayesian inference
– Uncertainty computation in deep learning
– Generalization of many well-known algorithms
–Works for deep nets.

• Generalizations and Extensions,
– VAEs, Mixture of Exponential Family, Evolution 

strategy etc.
– Convergence and regret bounds.
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On-Going Work

• Very large problems (Imagenet)
• Built-in optimizer in PyTorch
• Modifications to enable online/continual 

learning
– Theory of life-long learning

• Posterior approximations using DNNs
• Active learning
• Reinforcement Learning
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Collaboration Areas

• Applications of deep learning
– Computer vision, NLP, Audio, Multimodal data

• Interpretable/explainable/causal models
• Sequential learning
– Continual learning, Active learning, 

reinforcement learning, online learning.
– Generalization bounds 

• Discrete optimization/ nonconvex optimization

23



Related Works
• Sato (1998), Fast Learning of On-line EM Algorithm.
• Sato (2001), Online Model Selection Based on the Variational Bayes.
• Jordan et al. (1999), An Introduction to Variational Methods for Graphical Models.
• Winn and Bishop (2005), Variational Message Passing.
• Honkela et al. (2007), Natural Conjugate Gradient in Variational Inference.
• Honkela et al. (2010), Approximate Riemannian Conjugate Gradient Learning for Fixed-

Form Variational Bayes.
• Knowles and Minka (2011), Non-conjugate Variational Message Passing for Multinomial and 

Binary Regression.
• Hensman et al. (2012), Fast Variational Inference in the Conjugate Exponential Family.
• Hoffman et al. (2013), Stochastic Variational Inference.
• Salimans and Knowles (2013), Fixed-Form Variational Posterior Approximation through 

Stochastic Linear Regression. 
• Seth and Khardon (2016), Monte Carlo Structured SVI for Two-Level Non-Conjugate 

Models.
• Salimbani et al. (2018), Natural Gradients in Practice: Non-Conjugate Variational Inference 

in Gaussian Process Models.
• Zhang et al. (2018), Noisy Natural Gradient as Variational Inference

24



References

25

Available at https://emtiyaz.github.io/publications.html



References

26

Available at https://emtiyaz.github.io/publications.html



27
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Slides, papers, and code available at
https://emtiyaz.github.io 
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Generalization and 
Extensions
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Deep Nets + Graphical Models
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Neural Nets + 
Linear Dynamical System

Neural Nets + GMM

Published as a conference paper at ICLR 2018
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Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.

derive a variational message-passing algorithm whose messages automatically reduce to stochastic-
gradients for the deep components of the model, while perform natural-gradient updates for the PGM
part. Overall, our algorithm enables Structured, Amortized, and Natural-gradient (SAN) updates and
therefore we call our algorithm the SAN algorithm. We show that our algorithm give comparable
performance to the method of Johnson et al. (2016) while simplifying and generalizing it. The code
to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE

We consider the modelling of data vectors yn by using local latent vectors xn. Following previous
works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model the output yn
given xn using a neural network with parameters ✓NN, and capture the correlations among data
vectors y := {y1,y2, . . . ,yN} using a probabilistic graphical model (PGM) over the latent vectors
x := {x1,x2, . . . ,xN}. Specifically, we use the following joint distribution:

p(y,x,✓) :=

"
NY

n=1

p(yn|xn,✓NN)

#

| {z }
DNN

"
p(x|✓PGM)

#

| {z }
PGM

"
p(✓PGM)

#

| {z }
Hyperprior

, (1)

where ✓NN and ✓PGM are parameters of a DNN and PGM respectively, and ✓ := {✓NN,✓PGM}.

This combination of probabilistic graphical model and neural network is referred to as structured
variational auto-encoder (SVAE) by Johnson et al. (2016). SVAE employs a structured prior
p(x|✓PGM) to extract useful structure from the data. SVAE therefore differs from VAE (Kingma
& Welling, 2013) where the prior distribution over x is simply a multivariate Gaussian distribution
p(x) = N (x|0, I) with no special structure. To illustrate this difference, we now give an example.

Example (Mixture-Model Prior) : Suppose we wish to group the outputs yn into K distinct
clusters. For such a task, the standard Gaussian prior used in VAE is not a useful prior. We could
instead use a mixture-model prior over xn, as suggested by (Johnson et al., 2016),

p(x|✓PGM) =
NY

n=1

p(xn|✓PGM) =
NY

n=1

"
KX

k=1

p(xn|zn = k)⇡k

#
, (2)

where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.
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an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.
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Figure 1: Fig. (a) and (c) show two examples of generative models that combine deep models with
PGMs, while Fig. (b) and (d) show our proposed Structured Inference Networks (SIN) for the two
models. The generative models are just like the decoder in VAE but they employ a structured prior,
e.g., Fig. (a) has a mixture-model prior while Fig. (b) has a dynamical system prior. SINs, just like
the encoder in VAE, mimic the structure of the generative model by using parameters �. One main
difference is that in SIN the arrows between yn and xn are reversed compared to the model, while
rest of the arrows have the same direction.
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to reproduce our results is available at https://github.com/emtiyaz/vmp-for-svae/.

2 THE MODEL AND CHALLENGES WITH ITS INFERENCE
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where zn 2 {1, 2, . . . ,K} is the mixture indicator for the n’th data example, and ⇡k are mixing
proportions that sum to 1 over k. Each mixture component can further be modelled, e.g., by using
a Gaussian distribution p(xn|zn = k) := N (xn|µk,⌃k) giving us the Gaussian Mixture Model
(GMM) prior with PGM hyperparameters ✓PGM := {µk,⌃k,⇡k}Kk=1. The graphical model of
an SVAE with such priors is shown in Figure 1a. This type of structured-prior is useful for
discovering clusters in the data, making them easier to interpret than VAE.
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Going Beyond Exponential Family

• Fast and Simple NGD for approximations 
outside exponential family (under submission),
– Scale mixture of Gaussians, e.g., T-distribution,
– Finite mixture of Gaussian,
– Matrix Variate Gaussian,
– Skew-Gaussians. 

• The updates can be implemented using 
message passing and back-propagation.
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4 Generalization Bounds for Online VI

In this section, we present regret bounds for online VI al-
gorithms discussed in the previous section. Our bounds
take similar form to the one presented in Theorem 1, and
can be used to obtain generazation bounds similar to (4).
Our proofs require convexity of L̄t(µ) := Eqµ [`t(✓)]
with respect to µ, which is a strong assumption. Due
to this we are able to derive bounds for SVA and SVB.
We expect our bound to hold for NGVI too, due to its
similarity to SVA.

Specifically, all of our results use the following two as-
sumptions.
Assumption 4.1. L̄t is L-Lipschitz.
Assumption 4.2. L̄t is convex.

Some results require the following stronger assumption.
Assumption 4.3. L̄t is H-strongly convex where H > 0,
i.e., for any two µ, µ

0 2 M, the following holds:

L̄t(µ
0)� L̄t(µ) � (µ0 � µ)TrL̄t(µ) +

H

2
kµ0 � µk2.

Finally, some results also require convexity of KL.
Assumption 4.4. The KL divergence µ 7! K(qµ, qµ1) is
↵-strongly convex.

All of these assumption depend heavily on the
parametrization of {qµ, µ 2 M}. For some parameter-
ization, these assumptions do hold although such cases
are limited. For example, for Gaussian approximations
and convex `, the assumptions are satisfied, as pointed
out by Challis and Barber (2013). This result has recently
been extended by Domke (2019) to a general distribution
that belongs to the location-scale family. We give a for-
mal statement below.
Proposition 1 (Theorem 1 in Domke (2019)). Assuming
that qµ belongs to a location-scale family F = {qm,C}
where m is a d-length vector and C is a d⇥d matrix with

qm,C(✓) = [det(C)]�
1
2 (C� 1

2 (✓ �m))

for some fixed density  , the Assumption 4.2 is satisfied.
Moreover when each ✓ 7! `t(✓) is H-strongly convex
and that  is the density of a centered random variable
with variance matrix equal to the identity, then Assump-
tion 4.3 is also satisfied.

The results for Gaussian approximation can be obtained
as a special case of the above proposition.
Proposition 2. Assume that ✓ 7! `t(✓) is L

0-Lipschitz
w.r.t the Euclidean norm k · k on Rd. Assume that we use
F =

�
qm,C = N (m,C

T
C), (m,C) 2 M

 
, M ⇢ Rd⇥

UT (d). Then Assumption 4.1 is satisfied with L = 2L0.

We now state our regret bounds for SVA and SVB.

4.1 Bounds for SVA

By using a proof given in Appendix 6.4, we obtain the
following regret bound for SVA.
Theorem 2. Under Assumptions 4.1, 4.2 and 4.4, SVA
has the following regret bound:

P
T

t=1 `t(✓̂t) 

 inf
µ2M

(
E✓⇠qµ

"
TX

t=1

`t(✓)

#
+
⌘L

2
T

↵
+

K(qµ,⇡)

⌘

)
.

(15)

The above bound is almost identical to the bound given
in Theorem 1 where we can replace p by qµ, S by M,
the bound B by the Lipschitz constant L, and factor of
8 by the strong convexity parameter ↵. However, our
proof of Theorem 2 is completely different from the one
for Theorem 1. It relies on arguments from online convex
optimization that can be found in Shalev-Shwartz (2012);
Hazan (2016). A detailed proof is given in Appendix 6.4.

Similar to the Bayesian update case discussed in Section
2, using the online-to-batch analysis detailed in 6.2, we
can show that the average ✓̄T = (1/T )

P
T

t=1 ✓̂t satisfies

ED1:T⇠P⇤ [E⇤(✓̄T )]

 inf
µ2M

(
E✓⇠qµ [E⇤(✓)] +

⌘L
2

↵
+

K(qµ,⇡)

⌘T

)
. (16)

As an example consider the mean-field Gaussian ap-
proximation and assume that for any D, `(D, ·) is L/2-
Lipschitz (note that this is the assumptions of Proposi-
tion 2 ensuring that Assumption 4.1 is satisfied). Then
the following two expressions hold:

E✓⇠qµ [E⇤(✓)] = E⇤(m) +
k�kL
2

K(qµ,⇡) =
k�k2 + kmk2

2s2
+
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dX
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log
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s
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�
2
i

◆
� d

2
.

Therefore, taking � = (L⌘/(↵
p
d))(1, . . . , 1) and con-

sidering only the regret with respect to bounded means
m leads to

ED1:T⇠P⇤ [E⇤(✓̄T )]  inf
m2[�M̄,M̄ ]d

E(m) +
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2↵
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log
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and the choice ⌘ = (1/L)
p
↵d log(T/d)/T leads to the

following bound on ED1:T⇠P⇤ [E⇤(✓̄T )] 

inf
m2[�M̄,M̄ ]d

E⇤(m) + (1 + o(1))
2L

↵

r
d log (dT )

T
.
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