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The Goal of My Research

“To understand the fundamental principles of
learning from data and use them to develop
algorithms that can learn like living beings.”
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Human learning # Deep learning

Can we fix this?

My current research is focused on
reducing this gap.



Approximate Bayesian Inference

» Bayesian Learning &~ human learning
— Estimate posterior distribution over unknowns,
— But computationally very difficult!
 Algorithms that generalize well-known algorithms.

 Natural-Gradient Variational Inference

— A generalization of least-squares, Newton’s method,
Expectation Maximization, Kalman filters ....

— Also deep learning algorithms (Adam).

— Combines ideas from Bayesian Statistics, Continuous
Optimization, Information geometry, Deep Learning.



Uncertainty in Deep Learning

To estimate the confidence in the
predictions of a deep-learning system



Uncertainty for Image Segmentation

Truth  Prediction Uncertainty

(a) Input Image (b) Ground Truth (¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

(taken from Kendall et al. 2017)
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Challenges and Solution

The data and model are both extremely large.
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' |
New Algorithms!

Stochastic Gradient Descent:

0« 0 — pVol(6)

Natural Gradient Descent for approximate Inference

A — )+ PVM£ Moments of g

(e.g. mean & correlation)

A generalization of least-squares, Newton’s method,
Expectation Maximization, Kalman filters ....
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Variational Adam icwvi 2018

Deeptloaifgaoptiiviicem(e.g. Adam)

0. Sample € from a standard normal distribution
Otemp < 0 + € * \/\N*Scale+ 1’

1. Select a minibatch "Variance
2. Compute gradient using backpropagation
3. Compute a scale vector to adapt the learning rate

4. Take a gradient step
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Input 2

10

lllustration: Classification
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Adam vs Vadam (on Logistic-Reg)

Iteration 1

— Adam
— QUIr method
(mean)

Our method
(samples)

M=25,
Rho = 0.01,

- Gamma = 0.01



Input 2

Adam vs Vadam (on Neural Nets)

Epoch O
— Adam
: 3 ® C., ® —  QOUI'S
° /o (mean)
& .. Ours
- e . - :...f (samples)

4
(By Runa E.)
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LeNet-5 on CIFAR10

VOGN is our method

3.0 ) > — VOGN
- —— Adam Train %0 B
2 N Adam Test 5
B 2.0 —— VOGN Train  Es}
O I N N VOGN Test R T Tesrarme e e
_I 0 50 100 150 200 250 300
(@) Epochs
@)
—
VOGN | Adam

Log Loss | 1.130 | 8.341
Error 37.01 | 40.47

(By Anirudh Jain)



Test Accuracy

With BatchNorm

LeNet5 on FMNIST
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Parameter-Space Noise for Deep RL

On OpenAl Gym Cheetah with DDPG
with DNN with [400,300] ReLU
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Training trajectories

19



= » = Gradient Descent
= \/adam to Vadagrad

QO Initial Positions AVO i d i ng

Local
Minima
An example

taken from

Casella and
Robert’s book.

S s Vadam
c-ﬁ%*):@ > : =r <, reaches the
- a3 - flat minima,

but GD gets
stuck at a local
minima.

Optimization by smoothing, Gaussian homotopy/blurring etc., Entropy SGLD
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Summary of the Talk

* Approximate Bayesian inference
— Uncertainty computation in deep learning
— Generalization of many well-known algorithms
— Works for deep nets.

* (Generalizations and Extensions,

— VAEs, Mixture of Exponential Family, Evolution
strategy etc.

— Convergence and regret bounds.



On-Going Work

Very large problems (Imagenet)
Built-in optimizer in PyTorch

Modifications to enable online/continual
learning

— Theory of life-long learning

Posterior approximations using DNNs
Active learning

Reinforcement Learning




Collaboration Areas

Applications of deep learning

— Computer vision, NLP, Audio, Multimodal data
Interpretable/explainable/causal models
Sequential learning

— Continual learning, Active learning,
reinforcement learning, online learning.

— Generalization bounds
Discrete optimization/ nonconvex optimization
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A 5 page review

Fast yet Simple Natural-Gradient Descent for
Variational Inference in Complex Models

Mohammad Emtiyaz Khan
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
emtiyaz.khan@riken.jp

Abstract—Bayesian inference plays an important role in ad-
vancing machine learning, but faces computational challenges
when applied to complex models such as deep neural networks.
Variational inference circumvents these challenges by formulating
Bayesian inference as an optimization problem and solving it
using gradient-based optimization. In this paper, we argue in
favor of natural-gradient approaches which, unlike their gradient-
based counterparts, can improve convergence by exploiting the
information geometry of the solutions. We show how to derive fast
yet simple natural-gradient updates by using a duality associated
with exponential-family distributions. An attractive feature of
these methods is that, by using natural-gradients, they are able
to extract accurate local approximations for individual model
components. We summarize recent results for Bayesian deep
learning showing the superiority of natural-gradient approaches
over their gradient counterparts.

Index Terms—Bayesian inference, variational inference, nat-
ural gradients, stochastic gradients, information geometry,
exponential-family distributions, nonconjugate models.

Didrik Nielsen
RIKEN Center for Advanced Intelligence Project
Tokyo, Japan
didrik.nielsen @riken.jp

prove the rate of convergence |7]-|9]. Unfortunately, these
approaches only apply to a restricted class of models known
as conditionally-conjugate models, and do not work for non-
conjugate models such as Bayesian neural networks.

This paper discusses some recent methods that generalize
the use of natural gradients to such large and complex non-
conjugate models. We show that, for exponential-family ap-
proximations, a duality between their natural and expectation
parameter-spaces enables a simple natural-gradient update.
The resulting updates are equivalent to a recently proposed
method called Conjugate-computation Variational Inference
(CVI) [10]. An attractive feature of the method is that it
naturally obtains local exponential-family approximations for
individual model components. We discuss the application
of the CVI method to Bayesian neural networks and show
some recent results from a recent work [11] demonstrating
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Thanks!

Slides, papers, and code available at
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Generalization and
Extensions



Deep Nets + Graphical Models

Neural Nets + Neural Nets + GMM
Linear Dynamical System




Amortized Inference on VAE +
Probabilistic Graphical Models (PGM)

ICLR 2018

Graphical model + Structured Inference
Deep Model Network

Backprop on DNN, and forward-backward on PGM.



Going Beyond Exponential Family

» Fast and Simple NGD for approximations
outside exponential family ,
— Scale mixture of Gaussians, e.g., T-distribution,
— Finite mixture of Gaussian,

— Matrix Variate Gaussian,
— Skew-Gaussians.

* The updates can be implemented using
message passing and back-propagation.



Convergence Rates

UAI 2016
Lipschitz constant of Gradient noise
(nonconvex) ELBO variance
N\
p— A2/_
@[ ( Ak —)\k+1)/,0||2} < 2L200 -
- act Mo, |
R —»
/
Strong convexity of the Mini-batch
Fisher Information Matrix size

See Khan et al. UAI 2016. The proof is based on
Ghadimi, Lan, and Zhang (2014)



Bound Generalization Error

ICLR 2018
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