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The Big Picture

• Joint density models for data with mixed data types

• Bayesian models – principled and robust approach

• Algorithms that are not only accurate and fast, but are 

also easy to tune, implement, and intuitive (speed-

accuracy tradeoffs)
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Sources of Discrete Data

User rating data
Survey/voting 

data and blogs for 

sentiment analysis

Health data
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tag correlation.
Consumer choice data Sports/game data
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Motivation: Recommendation system

Movie rating dataset – Missing values – Different types of data 

User1 User2 User3 User4 User5 User6 ….

Movie1 9 2 3 9 ….

Movie2 8 8 2 ….
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Movie2 8 8 2 ….

Movie3 2 8 ….

Movie4 3 8 8 1 ….

Movie5 2 7 1 ….

Movie6 7 2 1 ….
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Missing Ratings

From Wikipedia on Netflix-prize dataset

“The training set is such that the average user rated over 200 movies, 

and the average movie was rated by over 5000 users. But there is wide 

variance in the data—some movies in the training set have as few as 3 

ratings, while one user rated over 17,000 movies.”

Movielens Dataset
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Movielens Dataset
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Sources of Discrete Data

User rating data
Survey/voting 

data and blogs for 

sentiment analysis

Health data
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tag correlation.
Consumer choice data Sports/game data
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For these datasets, we need a method of analysis which

• Handles missing values efficiently

• Makes efficient use of the data by weighting “reliable” 

data vectors more than the “unreliable” ones

• Makes efficient use of the data by “fusing” different 

What we need!
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• Makes efficient use of the data by “fusing” different 

types of data efficiently (binary, ordinal, categorical, 

count, text)
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N users L factors

Gaussian: 

Collins et. al. 2002, Khan et. al.2010, Yu et.al. 2009
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Bayesian Learning
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This talk: Lower bound maximization
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• Design tractable bounds to reduce approximation error

• Efficient optimization since lower bounds are concave : good 

convergence rates and easy convergence diagnostics

Variational Methods
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convergence rates and easy convergence diagnostics

• Efficient expectation-maximization (EM) algorithms for 

parameter leaning

• Comparable performance to MCMC, but much faster

• Algorithms with a wide range of speed-accuracy trade-offs
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Outline

• Latent Gaussian models

• Bounds for binary data

• Bounds for categorical data

• Results
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• Results

• Future work and conclusions
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Outline

• Latent Gaussian models

• Definition and examples

• Problem with parameter learning

• Bounds for binary data
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• Bounds for binary data

• Bounds for categorical data

• Results

• Future work and conclusions
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Likelihood Examples

0.9

Data type Distribution

Real Gaussian

Count Poisson

Binary Bernoulli-Logit

Categorical Multinomial-Logit
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2Ordinal Proportional-odds
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Parameter Estimation
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Jensen’s Lower Bound
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Variational Lower Bound

• Generalized EM algorithm
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• Generalized EM algorithm

• E-step involves minimizing convex function

• Early stopping in E-step

• (Almost) no tuning parameters

• Easy convergence diagnostics
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Outline

• Latent Gaussian models

• Bounds for binary data

• Bernoulli-logistic likelihood

• The Bohning bound (Khan, Marlin, Bouchard, Murphy, 
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• The Bohning bound (Khan, Marlin, Bouchard, Murphy, 

NIPS 2010)

• Piecewise bounds (Marlin, Khan, Murphy, ICML 2011)

• Bounds for categorical data

• Results

• Future work and conclusions
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Bernoulli-Logit Likelihood
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Local Variational Bounds

some other  

tractable terms 

in m and V 
+
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x

• Bohning’s bound (Khan, Marlin, Bouchard, Murphy 2010)

• Jaakola’s bound (Jaakkola and Jordan1996)

• Piecewise quadratic bounds (Marlin, Khan, Murphy 2011)
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Bohning Bound is Faster
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For n = 1:N

Vn = (WTAnW + I)-1

mn = ….. 

end

O(L3ND)

V = (WTAW + I)-1

For n = 1:N

mn = ….. 

end

O(L2ND)
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Piecewise bounds are more accurate

Bohning Jaakkola Piecewise

Q1(x)

Q2(x)

Q3(x)
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Q3(x)
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Details of Piecewise bounds

• Find cut points and 

parameters of each piece by 

minimizing maximum error

• Linear pieces (Hsiung, Kim 

and Boyd, 2008)
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and Boyd, 2008)

• Quadratic Pieces (Nelder-

Mead method)

• Fixed Piecewise Bounds!

• Increase accuracy by 

increasing the number of 

pieces
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Outline

• Latent Gaussian models

• Bounds for binary data

• Bounds for categorical data

• Multinomial-logistic likelihood and local variational
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• Multinomial-logistic likelihood and local variational

bounds

• Stick-breaking likelihood (Khan, Mohamed, Marlin,  

Murphy, AI-Stats 2012)

• Results

• Future work and conclusions
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Multinomial-Logit Likelihood

Mohammad Emtiyaz KhanSlide 30 of 46



Variational Methods for Discrete-Data Latent Gaussian Models

Local Variational bounds

• The Bohning bound

• Fast and closed form updates

• The log bound (Blei and Lafferty 2006)

• More accurate than the Bohning bound, but slower
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• More accurate than the Bohning bound, but slower

• The product of sigmoid bound (Bouchard 2007)
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Stick-Breaking Likelihood

0 1
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Outline

• Latent Gaussian models

• Bounds for binary data

• Bounds for categorical data

• Results
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• Results

• Future work and conclusions
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Speed Accuracy Trade-offs

Binary FA : UCI voting dataset (D=15, N=435)
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Bohning

Jaakkola

Piecewise Linear with 3 pieces

Piecewise Quad with 3 pieces

Piecewise Quad with 10 pieces
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Comparison with EP

Binary Gaussian Process : Ionosphere dataset (D=200)

Σij =σ exp[-||xi-xj||
2/s]

µ, Σ

Mohammad Emtiyaz KhanSlide 35 of 46

n=1:N

zn

yn

µ, Σ

W



Variational Methods for Discrete-Data Latent Gaussian Models

EP vs PW : Posterior Distribution
(Neg) KL-Lower 

Bound to MargLik
Approximation

To MargLik Pred Error
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Comparison with EP

• Both methods give very similar results for GPs

• Our approach can be easily extended to factor 

models

• Variational EM objective function is well-defined 
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• Variational EM objective function is well-defined 

and can be obtained by solving minimization of 

convex functions

• Numerically stable
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MultiClass Gaussian Process

MCMC
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Bohning Log VB-probit Stick-PW

Glass dataset (D=143, K=6)
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Categorical Factor Analysis

Glass dataset (D = 10, N = 958, sum of K = 29)

Logit-log

Stick-PW
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Outline

• Latent Gaussian models

• Bounds for binary data

• Bounds for categorical data

• Results
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• Results

• Future work and conclusions
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Future Work

• Large-scale collaborative filtering

• Use convexity to design approximate gradient methods

• Sparse Gaussian Posterior Distribution

• Tuning HMC using Bayesian optimization methods

• Latent Sparse-factor model
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• Latent Sparse-factor model

• Conditional models (e.g. to model for tag-image correlation)
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Conclusions

• Variational methods show comparable performance with existing 

approaches

• The main sources of errors is the bounding error

• Design of piecewise bounds to control these errors

• A good control over speed-accuracy trade-offs can be obtained
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• A good control over speed-accuracy trade-offs can be obtained

• Variational lower bounds can be optimized efficiently

• Use of convex optimization methods to get fast convergence 

rates and easy convergence diagnostics

• Design of efficient expectation-maximization (EM) algorithms
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Thank You

Mohammad Emtiyaz KhanSlide 46 of 46

Thank You


