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Abstract

In this note, we derive a variational EM algorithm for correlated topic models. This algorithm was
proposed in Blei and Lafferty’s original paper [BL06] and is based on a simple bound on logarithm.
Because of the form of this bound, E-step update are not available in closed form and need to be solved
with a coordinate ascent algorithm.

1 Correlated Topic Model

Consider D number of documents with W words each. These words belong to a fixed vocabulary of size
V . Let us say that there are T topics. The correlated topic model is a generative model for documents
and is given as follows,

p(ηd|µ,Σ) = N (ηd|µ,Σ) (1)

p(zn,d|ηd) = Mult(f(ηd)) (2)

p(wn,d|zn,d,β1:T ) = Mult(βzn,d
) (3)

where f(a) = ea/
∑
j e
aj . Basically we sample probability vector for each topic using a logistic-normal

distribution. Next using this probability vector we sample a topic for each word. Depending on the topic,
words are then generated from a fixed probability distribution. We are interested in finding similarity
between the topics and a clustering of words based on the topics. We use the following notation in the
following: we denote vectors with small bold letters (e.g. a) and matrices with capital bold letters (e.g.
A). For scalars we use both small/capital plain faced letters. We use t = 1, . . . , T as an index over
topics, v = 1, . . . , V as an index over words in the vocabulary, d = 1, . . . , D as an index over documents,
and n = 1, . . . ,Wd as an index over words in dth document.

The joint-distribution is the following,

D∏
d=1

p(wd, zd,ηd|µ,Σ,B) =
D∏
d=1

[
Wd∏
n=1

p(wn,d|zn,d,B)p(zn,d|ηd)

]
p(ηd|µ,Σ) (4)

where B = [β1,β2, . . . ,βT ]. Our goal is to infer the posterior distribution over η1:D given the data.
Also we wish to estimate the parameters Θ = {µ,Σ,B}. We will take an empirical Bayes approach to
estimate the parameters i.e. we maximize the marginal likelihood with respect to the parameters. The
marginal likelihood of the data given parameters Θ can be found as follows,

p(w1:D|Θ) =
∏
d

∫
ηd

p(wd|ηd,B)p(ηd|µ,Σ)dηd (5)

Unfortunately this integral is intractable and hence we will resort to the variational methods for opti-
mization. We first find a lower bound for which the integral is tractable, and then maximize the lower
bound with respect to the parameters.
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2 A lower bound for the marginal likelihood

To make the integral tractable, we introduce an auxiliary distribution q(η1:D) =
∏
d qd(ηd) and use

Jensen’s inequality to find a lower bound. We fix qd to be a normal distribution with mean md and
covariance Vd. Taking log of the marginal likelihood,

log p(w1:D|Θ) =
∑
d

log

∫
ηd

p(wd|ηd,B)p(ηd|µ,Σ)dηd (6)

=
∑
d

log

∫
ηd

p(wd|ηd,B)p(ηd|µ,Σ)

q(ηd|md,Vd)
q(ηd|md,vd)dηd (7)

≥
∑
d

〈log p(wd|ηd,B)〉qd + 〈log p(ηd|µ,Σ)〉qd + H(qd) (8)

=
∑
d

〈log p(wd|ηd,B)〉qd −KL [qd(ηd|md,Vd)||p(ηd|µ,Σ)] (9)

Here 〈·〉q denotes the expectation with respect to the distribution q, H(·) denotes the entropy of a
distribution, and KL(·) denotes the KL divergence. Last term is given as follows (see Wikipedia),

−KL (qd||p) = −1

2
log |Σ|+ 1

2
log |Vd| −

1

2

{
Tr
(
Σ−1Vd

)
+ (md − µ)TΣ−1(md − µ)

}
+ cnst (10)

It is not possible to get a closed form expression for the first term, but we can find another lower bound
to it.

2.1 Lower bound for the first term

To make notation simpler, we drop the subscript d. We can integrate out z to get the following (see
Appendix A),

p(w|η,B) =

∏V
v=1

(∑T
t=1 βv,te

ηt
)cv

(∑T
t=1 e

ηt

)W (11)

Here cv is the count of vth word. Taking log,

log p(w|η,B) =
∑
v

cv log
∑
t

βv,te
ηt −W log

∑
t

eηt (12)

Expectation of these terms is hard to compute, so we find a tractable lower bound. The first term can
be lower bounded using Jensen’s inequality by introducing an auxiliary distribution sv:

log
∑
t

βv,te
ηt ≥

∑
t

sv,t(ηt + log βv,t)−
∑
t

sv,t log sv,t (13)

For the second term we note that,
log x ≤ ξ−1x+ log ξ − 1 (14)

This can be derived using the concave-conjugate of log function (see [BV04], Chapter 3). Using this we
get the following lower bound for the second term,

− log
∑
t

eηt ≥ −ξ−1
∑
t

eηt − log ξ + 1 (15)

Using these two lower bounds we get the following expression for the expectation,

〈log p(w|η,B)〉 ≥
∑
v,t

cvsv,t (log βv,t + 〈ηt〉 − log sv,t)−Wξ−1
∑
t

〈eηt〉q −W log ξ +W (16)

The second expectation is given as follows (see derivation in Appendix B),

〈eηt〉q = e
1
2
Vtt+mt (17)
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This gives us a lower bound for the first term,

〈log p(w|η,B)〉 ≥
∑
v,t

cvsv,t (log βv,t +mt − log sv,t)−Wξ−1
∑
t

e
1
2
Vtt+mt −W log ξ +W (18)

Including the document subscripts,

〈log p(wd|ηd,B)〉 ≥
∑
v,t,d

cv,dsv,t,d (log βv,t +mt,d − log sv,t,d)−Wdξ
−1
d

∑
t

e
1
2
Vtt,d+mt,d −W log ξd +W

(19)

2.2 Final lower bound

We get the following lower bound to the marginal likelihood,

Lq(Θ) =
∑
v,t,d

cv,dsv,t,d (log βv,t +mt,d − log sv,t,d)−
∑
d

Wdξ
−1
d

∑
t

e
1
2
Vtt,d+mt,d −

∑
d

Wd log ξd +
∑
d

Wd

− D

2
log |Σ|+ 1

2

∑
d

log |Vd| −
1

2

∑
d

{
Tr
(
Σ−1Vd

)
+ (md − µ)TΣ−1(md − µ)

}
(20)

subject to the constraints
∑
v βv,t = 1, ∀t and

∑
t sv,t,d = 1 for all t and d.

3 A variational EM algorithm

We now use EM algorithm to maximize the marginal likelihood. In E-step we maximize with respect to
the parameters of qd, and in M-step we maximize with respect to Θ.

3.1 Optimizing with respect to the parameters (M-step)

Differentiating the lower bound with respect to µ and Σ−1,

∂L
∂µ

= −
∑
d

Σ−1(md − µ) (21)

∂L
∂Σ−1 =

D

2
Σ− 1

2

∑
d

Vd −
1

2

∑
d

(md − µ)(md − µ)T (22)

and setting it to zero we get the updates,

µ =
1

D

∑
d

md (23)

Σ =
1

D

∑
d

Vd + (md − µ)(md − µ)T (24)

Next we optimize over sv,t, βv,t. To include the constraint we use the Lagrangian multiplier. The
objective function is given as follows,∑

v,t,d

cv,dsv,t,d (log βv,t +mt,d − log sv,t,d) + γ1(1−
∑
v

βv,t) + γ2(1−
∑
v

sv,t) (25)

where γ is the Lagrangian multiplier. Differentiating with respect to βv,t, γ1, sv,t,d, γ2 we get the following,

β−1
v,t

∑
d

cv,dsv,t,d − γ1 = 0 (26)

1−
∑
v

βv,t = 0 (27)

cv,d (log βv,t +mt,d)− cv,d log sv,t,d − cv,d − γ2 = 0 (28)

1−
∑
v

sv,t,d = 0 (29)
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Solving these equations we get the following updates,

βv,t ∝
∑
d

cv,dsv,t,d (30)

sv,t,d ∝ βv,temt,d (31)

with normalization to 1 over v for first quantity and over t for second quantity.

3.2 Optimizing with respect to the variational parameters (E-step)

First we optimize with respect to ξ1:D. Derivative is given as follows,

∂L
∂ξd

= Wdξ
−2
d

∑
t

e
1
2
Vtt,d+mt,d −Wdξ

−1
d (32)

which gives us the following update for ξd,

ξd =
∑
t

e
1
2
Vtt,d+mt,d (33)

Substituting this we get the following objective function for md,Vd,

L′(µd,Vd) = cTd Sdmd−Wd log
∑
t

e
1
2
Vtt,d+mt,d+

1

2
log |Vd|−

1

2

{
Tr
(
Σ−1Vd

)
+ (md − µ)TΣ−1(md − µ)

}
(34)

where Sd is V ×T matrix containing sv,t,d for a fixed d. Closed form updates are not possible for md and
Vd because of the presence of the exponential term. However we can still use a gradient based methods
using the following gradients,

∂L
∂md

= Sdcd −Σ−1(md − µ)− Wd

ξd
ediag(

1
2
Vtt,d+mt,d)

1:T (35)

∂L
∂Vd

= −1

2
Σ−1 +

1

2
V−1
d −

Wd

2ξd
ediag(

1
2
Vtt,d+mt,d)

1:T (36)

Here diag(at)1:T means a diagonal matrix with diagonal entries at. The pseudo-code is summarized in
Algorithm 1 In the case of diagonal Vd, the above equations reduce to Eq. (16-17) in [BL06]. Note that
we have to compute both Vd and inverse of Vd for the E-step. The case where we fix Vd to be diagonal
will be much faster as we don’t have to compute inverse of Vd at every iteration.

A Integrating out z

p(w|η,B) =
∑
z
p(w, z|η,B) (43)

=
∑
z

W∏
n=1

p(wn|zn,B)p(zn|η) (44)

=

V∏
v=1

[∑
z
p(wn|zn,B)p(zn|η)

]cv
(45)

=

V∏
v=1

[
T∑
t=1

βv,t
eηt∑
t′ e

ηt′

]cv
(46)

=

∏V
v=1

(∑T
t=1 βv,te

ηt
)cv

(∑T
t=1 e

ηt

)W (47)
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Algorithm 1 (Variational EM, Blei & Lafferty)

1: Initialize µ(0) = md = 0,Σ(0) = IT ,Vd = IT .
2: Iterate between E and M step until convergence.
3: E-Step: For d = 1, 2, . . . , D, solve the following equations,

Sdcd −Σ−1(md − µ)− Wd

ξd
ediag(

1
2Vtt,d+mt,d)

1:T = 0 (37)

−1

2
Σ−1 +

1

2
V−1

d −
Wd

2ξd
ediag(

1
2Vtt,d+mt,d)

1:T = 0 (38)

where ξd =
∑

t e
1
2Vtt,d+mt,d , Sd = [s1, . . . , sV ] and sv is a vector of sv,t log βv,t for all t.

4: M-Step

µ =
1

D

∑
d

md (39)

Σ =
1

D

∑
d

Vd + (md − µ)(md − µ)T (40)

βv,t ∝
∑
d

cv,dsv,t,d (41)

sv,t,d ∝ βv,temt,d (42)

with normalization to 1 over v for first quantity and over t for second quantity.

B Expression for 〈eηt〉q

〈eηt〉q =

∫
eηtq(ηt|mt, Vtt)dηt (48)

=

∫
1√

2πVtt
e
− 1

2Vtt
(ηt−mt)

2+ηtdηt (49)

We now complete squares,

(ηt −mt)
2 − 2Vttηt (50)

= η2t +m2
t − 2ηtmt − 2Vttηt (51)

= η2t +m2
t − 2ηt(mt + Vtt) (52)

= η2t + (mt + Vtt)
2 − 2ηt(mt + Vtt) +m2

t − (mt + Vtt)
2 (53)

= (ηt −mt − Vtt)2 − V 2
tt − 2mtVtt (54)

Using this we get the following expression for the expectation,

〈eηt〉q = e
1
2
Vtt+mt (55)
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