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Abstract

In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki’s PhD thesis.

1 Notation

We denote scalars by small letters e.g. a, b, c, . . ., vectors by boldface small letters e.g. λ,α,x, . . ., matrices
by boldface capital letter e.g. A,B,C, . . ., (subsets of) natural numbers by capital letters e.g. N,M, . . .. We
denote i’th element of a vector a by ai and (i, j)’th entry of a matrix A by Aij . We denote the i’th column
(or row) of A by A:,i (or Ai,:). We use Aa,−i (or A−a, i to refer to the a’th row (or i’th column) without

the element Aa,i. Also, AT denote the transpose of a matrix A.

2 Basis Pursuit Problem

Given measurements y of length n and matrix A of size n×N , we wish to compute s which is the minimizer
of Eq. 1. This is known as the basis pursuit problem. Here, || · ||1 is the l1-norm. A version of this problem
where we allow for errors in the measurements is called basis pursuit denoising problem (aka LASSO), shown
in Eq. 2. Here, || · ||2 is the l2-norm.

BP: min
s
||s||1, s.t. y = As (1)

BPDN: min
s
λ||s||1 + 1

2 ||y −As||22 (2)

3 Posterior Distribution

Consider the following posterior distributions in Eq. 3, where the prior distribution p(si) is the Laplace
distribution and the likelihood p(ya|s,Aa,:) is the Dirac distribution.

p(s|y) ∝
N∏
i=1

p(si)

n∏
a=1

p(ya|s,Aa,:) (3)

=

N∏
i=1

exp(−β|si|)
n∏
a=1

δ(ya = Aa,:s) (4)

As β → ∞, mass of this posterior distribution concentrates around the minimizer of BP. This implies that
given the marginals of this posterior distribution, solution of BP is immediate. A formal proof is not given
in [Mal11]. We give an intuitive explanation in Fig. 3.
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Figure 1: Visualization of the posterior distribution in Eq. 3 for two variables s1 and s2. Left figure
shows the negative-log of prior distribution which is β(|s1|+ |s2|) and the negative log-likelihood of a single
measurement corresponding to a Gaussian likelihood (black lines). Right figure shows the negative-log of the
posterior distribution. As β →∞, the posterior become more peaky around the sparse solution where s1 is
zero. We can also see that the marginal of s1 concentrates around 0, while that of s2 concentrates around a
non-zero value. Figure from [See08].

4 Belief Propagation

Belief propagation can be used to compute the marginal distributions of a posterior distribution. We start
by defining a factor graph which captures the statistical dependencies between the variables, and then do
message passing. In this section, we will briefly describe belief propagation for the basis pursuit problem;
interested reader should see [Bis06] for a general case. First consider the posterior distribution of Eq. 3
with the prior distribution p(si) and likelihood p(ya|s,Aa,:). We define a bipartite factor graph where
s1, s2, . . . , sN are variables and y1, y2, . . . , yn are factors. We draw an edge between a variable and a factor
if the corresponding measurement depends on the variable (in the BP problem, it will be a dense graph but
if A was sparse then non-zero entries will correspond to an edge). Define, N(a) to be the neighborhood of
a’th factor i.e. the set of variables that are connected to factor a and define N(a)\i to be the set without the
variable i. The messages, defined below, are passed from variables to factors and then factors to variables.

mi→a(si) = p(si)
∏

b∈N(i)\a

mb→i(si) (5)

ma→i(si) =

∫
s−i

p(ya|s)
∏

j∈N(a)\i

mj→a(sj)ds−i (6)

Intuitively, the message from a variable i to a factor a contains multiplication of prior belief p(si) with all
the messages received except the message that was sent by factor a. Similarly, the message from a factor
a to a variable i contains multiplication of the likelihood p(ya|s) with all the messages received except the
message that was sent by variable i. The variables other than i are then integrated out of the message. The
marginal of a variable is then given by multiplication of all the messages that arrive at that variable along
with the local belief as shown below.

p(si|y) = p(si)
∏
b∈N(i)

mb→i(si) (7)

We will now give a simple example to show that message passing results in the marginals at each node.
Consider two variables s1, s2 and s3 with two measurements ya and yb, following a joint distribution which
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factorizes as shown below.

p(ya, yb, s1, s2, s3) = p(ya|s1, s2)p(ya|s2, s3)p(s1)p(s2)p(s3) (8)

The statistical dependencies between variable and measurements can be expressed using the following factor
graph: s1 − ya − s2 − yb − s3. Here, ya depends on s1, s2 and yb depends on s2, s3. Using Eq. 5 and 6, we
can write down the messages explicitly as shown below.

Messages from factors to variables:

ma→1(s1) =

∫
s2

p(ya|s1, s2)m2→a(s2)ds2 (9)

ma→2(s2) =

∫
s1

p(ya|s1, s2)m1→a(s1)ds1 (10)

mb→2(s2) =

∫
s3

p(yb|s2, s3)m3→b(s3)ds3 (11)

mb→3(s3) =

∫
s2

p(yb|s2, s3)m2→b(s2)ds2 (12)

Messages from variables to factors:

m1→a(s1) = p(s1) (13)

m2→a(s2) = p(s2)mb→2(s2) (14)

m2→b(s2) = p(s2)ma→2(s2) (15)

m3→b(s3) = p(s3) (16)

Now, we establish that this message passing will result in the marginal of s1, s2 and s3. The marginal of
s1 is simplified below in Eq. 22.

p(s1|ya, yb) ∝ p(s1, ya, yb) (17)

=

∫
s2

∫
s3

p(s1, s2, s3, ya, yb)ds3ds2 (18)

=

∫
s2

∫
s3

p(ya, yb|s1, s2, s3)p(s1, s2, s3)ds3ds2 (19)

=

∫
s2

∫
s3

p(ya|s1, s2)p(yb|s2, s3)p(s1)p(s2)p(s3)ds3ds2 (20)

= p(s1)

∫
s2

∫
s3

p(ya|s1, s2)p(yb|s2, s3)p(s2)p(s3)ds3ds2 (21)

= p(s1)

∫
s2

p(ya|s1, s2)p(s2)

∫
s3

p(yb|s2, s3)p(s3)ds3ds2 (22)

We see that after the following 4 message passes 3→ b, b→ 2, 2→ a, a→ 1, we get the marginal of s1.

p(s1|ya, yb) ∝ p(s1)

ma→1(s1)︷ ︸︸ ︷
∫
s2

p(ya|s1, s2) p(s2)

mb→2(s2)︷ ︸︸ ︷∫
s3

p(yb|s2, s3) p(s3)︸ ︷︷ ︸
m3→b(s3)

ds3

︸ ︷︷ ︸
m2→a(s2)

ds2 (23)

Similarly, marginal of s2 can be written as follows,

p(s2|ya, yb) ∝ p(s2)

∫
s1

p(ya|s1, s2)p(s1)ds1

∫
s3

p(yb|s2, s3)p(s3)ds3ds2 (24)
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and after the following 4 message passes 3→ b, b→ 2, 1→ a, a→ 2, we get the marginal of s2.

p(s2|ya, yb) ∝ p(s2)

ma→1(s1)︷ ︸︸ ︷∫
s1

p(ya|s1, s2) p(s1)︸ ︷︷ ︸
m1→a(s1)

ds1

mb→2(s2)︷ ︸︸ ︷∫
s3

p(yb|s2, s3) p(s3)︸ ︷︷ ︸
m3→b(s3)

ds3 (25)

5 Approximate Message Passing

Our goal is to compute the marginal distribution of the following posterior distribution,

p1(s|y) ∝
N∏
i=1

exp(−β|si|)
n∏
a=1

δ(ya = Aa,:s) (26)

We define a factor graph with {si}Ni=1 as variables and {ya}na=1 as factors. From the posterior distribution,
it is easy to see that every ya depends on all si’s. Therefore, in the factor graph each ya is connected to
all the si’s, i.e. the factor graph is a fully connected bipartite graph where each factor is connected to all
variables. Using the belief propagation algorithm, we can compute marginal distributions of all variables si.
A direct application of Eq. 5 and 6, however, is not possible because of the following reasons:

1. The marginal distributions p(si|y) are not Gaussians since the likelihood p(y|s) is not conjugate to
the prior distribution p(s). Similarly, messages are also non-Gaussian and it is not clear how to
parameterize them.

2. Number of messages that need to be propagated every iteration is in O(nN) since every variable sends
n messages to every factor (and vice-versa).

Problem (1) can be solved by approximating the messages by Gaussians using Lemma 5.1, 5.2 and 5.3.
Problem (2) can be solved by using Lemma 5.4, which makes more approximations on messages to make
them independent of the sink of the messages. We will now describe these lemmas briefly. We will leave
the exact description of “approximations” in these lemmas and focus on intuitive explanations; please see
[Mal11] for a detailed description.

For problem (1), it turns out that if the third moment of a message is bounded then a Gaussian ap-
proximation is a reasonable one. This is shown in next two lemmas. The following lemma assumes that if
messages from variables to factor have their third moment bounded, then messages from factor to variables
can be approximated by Gaussians. This lemma can be proved by using Eq. 6 and applying the Berry-Eseen
central limit theorem.

Lemma 5.1. Let us denote the mean and variance of the messages mj→a(sj) by Xja and Tja/β and assume
that their third moment is bounded, then messages ma→i(si) are “close” to the Gaussian distribution given
in Eq. 27, defined through the mean parameter Mai and variance parameter Vai given in Eq. 28 and 29.

ma→i ≈ N
(
Mai

Aai
,
Vai
βA2

ai

)
(27)

Mai := ya −Aa,−iX−i,a (28)

Vai := Aa,−idiag(T−i,a)AT
a,−i (29)

The following lemma shows that if messages from factors to variables are Gaussians, then message from
variables to factors will follow a simple distribution. This lemma can be proved by a direct application of 5.
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Algorithm 1 Message passing algorithm for the basis-pursuit problem

Require: Measurements y and matrix A
Ensure: Marginals of the distribution Eq. 3
Xai ← 0,∀a, i and v = 1
repeat
for a = 1, 2, . . . , n do
for i = 1, 2, . . . , N do
Mai ← ya −Aa,−iX−i,a

v ← v
N

∑N
i=1 η

′
(
AT

:,iM:,i, v
)

end for
end for
for a = 1, 2, . . . , n do
for i = 1, 2, . . . , N do

Xia ← η
(
AT
−a,iM−a,i, v

)
end for

end for
until convergence

Lemma 5.2. Assuming that each ma→i(si) follows the Gaussian distribution defined in Eq. 27, the messages
mi→a(si) follow a distribution given in Eq. 30 which is defined through a distribution defined in Eq. 31.

mi→a(si) ≈ pβ
(
si|AT

−a,iM−a,i, Vai

)
(30)

pβ(s|µ, σ2) ∝ exp

[
−β|s| − β

2σ2
(s− µ)2

]
(31)

A simple algorithm is to represent these messages by only first two moments. We can start the distribution
from variables to factor mj→a to a standard Gaussian, i.e. Xja = 0 and Tja = 1, then iterate as follows:

Mai ← ya −Aa,−iX−i,a (32)

Vai ← Aa,−idiag(T−i,a)AT
a,−i (33)

Xia ← Mean
[
pβ

(
si|AT

−a,iM−a,i, Vai

)]
(34)

Tia ← Variance
[
pβ

(
si|AT

−a,iM−a,i, Vai

)]
(35)

This algorithm can be simplified further by assuming that Vai is equal to a constant v for all a, i, then
replacing AT

−a,iM−a,i by AT
:,iM:,i in Eq. 35 and then approximating Eq. 33 by a sample average.

Mai ← ya −Aa,−iX−i,a (36)

v ← 1

N

N∑
i=1

Variance
[
pβ

(
si|AT

:,iM:,i, v
)]

(37)

Xia ← Mean
[
pβ

(
si|AT

−a,iM−a,i, v
)]

(38)

Next lemma shows that in the limit as β → ∞, computation of mean and variance can be done by a
simple soft-thresholding function.

Lemma 5.3. For bounded µ and σ2,

lim
β→∞

Mean
[
pβ(s|µ, σ2)

]
= η(µ, σ2) (39)

lim
β→∞

Variance
[
pβ(s|µ, σ2)

]
= σ2η′(µ, σ2) (40)
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Algorithm 2 Approximate message passing algorithm for the basis-pursuit problem

Require: Measurements y and matrix A
Ensure: Marginals of the distribution Eq. 3

x← 0,m← 0 and v = 1
repeat
xold ← x
vold ← v
t← ATm
x← η(t + x, v)
v ← v

δ 〈η
′ (t + x, v)〉

m← y −Ax + 1
δm. ∗

〈
η′
(
t + xold, vold

)〉
until convergence

where η(µ, v) is the soft-threshold function where takes a value µ − v if µ > v or µ + v if µ < −v and zero
elsewhere, η′(µ, v) is the derivative of η(µ, v).

Using this, we get the following message passing algorithm shown in Algorithm 1. Although this algorithm
is simple, we still have too many messages. Each of these steps require matrix multiplication which needs to
be done for all variables and factors. The following lemma shows that given a certain asymptotic behavior,
a message can be approximated by another message that is independent of the sink, i.e. independent of
the variable/factor that the message is sent to. This lemma can be derived by simply substituting the
assumptions of Eq. 41 and 42 in the message passing iterations of Algorithm 1, and then simplifying by
removing the term which are O(1/N).

Lemma 5.4. Denote the messages at k’th iteration with a subscript (k). Let us assume that the messages
at k’th iteration follow the following asymptotic behavior:

X
(k)
ia = x

(k)
i + δX

(k)
ia +O(1/N) (41)

M
(k)
ai = m(k)

a + δM
(k)
ai +O(1/N) (42)

with δX
(k)
ia , δM

(k)
ai = O(1/N), then variable x

(k)
i and m

(k)
a satisfy the following,

x
(k)
i = η

(
AT

:,im
(k−1) + x

(k−1)
i , v(k−1)

)
+ oN (1) (43)

m(k)
a = ya −Aa,:x

(k) +
1

δ
m(k−1)
a

〈
η′
(
ATm(k−1) + x(k−1), v(k−1)

)〉
+ oN (1) (44)

v(k) =
v(k−1)

δ

〈
η′
(
ATm(k−1) + x(k), v(k−1)

)〉
(45)

where oN (1) terms vanish as N,n→∞.

Using this lemma, we can simplify Algorithm 1 to obtain Algorithm 2.
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