On the Construction of Global Estimate from the Local Estimates in Track Fusion

Mohammad Emtiyaz Khan

Honeywell Technology Solutions Lab, Bangalore, India.

August 25, 2005

Abstract

In this paper, we ask the following question for a single target and two pursuers track fusion case: can we obtain the global estimate from the local estimate by simple addition? We observe that the common process noise leads to correlated observations in track-to-track fusion. Because of the correlation the estimation problem cannot be solved with simple addition of the local estimates. It is illustrated for a simple case that an orthogonalization procedure may solve the problem.

1 The Model

Let us consider single target T following the model:

$$\mathbf{x}_{t+1} = A_t \mathbf{x}_t + \mathbf{w}_t \tag{1}$$

where $\mathbf{x}_t \in \Re^n$ is the state vector, $\mathbf{w}_t \in \Re^n$ is the state noise vector. We assume that the initial state vector and the noise vector are *i.i.d* Gaussian random variables, $\mathbf{x}_0 \sim N(\mu_0, \Sigma_0)$, $\mathbf{w}_t \sim N(0, Q_t)$, where, Σ_0 and Q_t are symmetric, positive definite matrices. We have two pursuers, P_1 and P_2 , each with a measurement model

$$\mathbf{y}_{t,i} = C_{t,i}\mathbf{x}_t + \mathbf{v}_{t,i}, \quad i = 1,2$$

 $\mathbf{y}_{t,1}, \mathbf{y}_{t,2} \in \Re^m$ are the output vectors, and $\mathbf{v}_{t,1}, \mathbf{v}_{t,2} \in \Re^m$ are the measurement noise vector, with $\mathbf{v}_{t,1} \sim N(0, R_{t,1})$ and $\mathbf{v}_{t,2} \sim N(0, R_{t,2})$. For simplicity, $E(\mathbf{v}_{t,1}\mathbf{w}_t^T) = 0$, $E(\mathbf{v}_{t,2}\mathbf{w}_t^T) = 0$, $E(\mathbf{v}_{t,1}\mathbf{v}_{t,2}^T) = 0$, $E(\mathbf{v}_{t,1}\mathbf{v}_{t,2}^T) = 0$, $E(\mathbf{v}_{t,0}\mathbf{v}_t^T) = 0$, $E(\mathbf{x}_0\mathbf{v}_{t,1}^T) = 0$ and $E(\mathbf{x}_0\mathbf{v}_{t,2}^T) = 0$, where E() is the *Expectation* operator. We also assume that the matrix pair, $\{A_t, Q_t^{1/2}\}$ is controllable, and each of $\{A_t, C_{t,i}\}$ is observable. This ensures stability of the Kalman filter, *i.e.*, the error covariance and update gain matrices converge asymptotically to their steady-state values.

2 Global from Local

We denote the observation sequence from i^{th} pursuer as $Y_{s,i} \equiv \{\mathbf{y}_{1,i}, \dots, \mathbf{y}_{s,i}\}$ for i = 1, 2. Also the joint observation is denoted by $Y_s \equiv \{Y_{s,1}, Y_{s,2}\}$. We call $E(\mathbf{x}_t|Y_t)$ as

the "global" linear minimum mean square error (l.m.s.e.) estimate, in contrast to the $E(\mathbf{x}_t|Y_{t,i})$ as the local estimate of i^{th} pursuer. As stated in (Kailath *et al.* 2000), the global estimate using the local estimates from the pursuers can be found as,

$$E(\mathbf{x}_t|Y_t) = E(\mathbf{x}_t|Y_{t,1}) + E(\mathbf{x}_t|Y_{t,2})$$
(3)

if and only $E(\mathbf{y}_{i,1}, \mathbf{y}_{i,2}) = 0$ for i = 1, ..., t. However for the model given in Section 1,

$$E(\mathbf{y}_{i,1}\mathbf{y}_{j,2}) = E[(C_{i,1}\mathbf{x}_i + \mathbf{v}_{i,1})(C_{j,2}\mathbf{x}_j + \mathbf{v}_{j,2})]$$
(4)

$$= E[C_{i,1}\mathbf{x}_i\mathbf{x}_jC_{j,2}^T + \mathbf{v}_{i,1}\mathbf{v}_{j,1}^T]$$
(5)

$$= C_{i,1}E(\mathbf{x}_i\mathbf{x}_j)C_{j,2}^T \tag{6}$$

as $\mathbf{v}_{i,1} \perp \mathbf{v}_{j,2} \perp \mathbf{x}_0$. Using the state equation in the state-space model, we have,

$$E(\mathbf{x}_i \mathbf{x}_j) = \begin{cases} A^{i-j} R_{x,j}, & i \ge j \\ R_{x,j} A^{(i-j)T} & i \le j \end{cases}$$
(7)

which gives,

$$E(\mathbf{y}_{i,1}\mathbf{y}_{j,2}) = \begin{cases} C_{i,1}A^{i-j}R_{x,j}C_{j,2}^{T}, & i \ge j \\ C_{i,1}R_{x,j}A^{(i-j)T}C_{j,2}^{T}, & i \le j \end{cases}$$
(8)

Easy to see that the correlation will not be zero, and hence the estimation using the joint observations cannot be found using a simple addition with Eq. (3). To apply this equation one needs to remove the correlation among the observations, which we illustrate with simple example. Consider two observations y_1 and y_2 associated with a common state x, then the component in y_2 orthogonal to y_1 can be found as,

$$z = y_2 - \frac{\langle y_1 y_2 \rangle}{\langle y_1 y_1 \rangle} y_1 \tag{9}$$

where \langle , \rangle is inner-product in the vector-space of random variables (which is expectation, see (Kailath *et al.* 2000), page 328 for details). Then Eq. (3) can be used to find the estimate,

$$E(x|y_1, y_2) = E(x|y_1) + E(x|z)$$
(10)

Definitely this equation cannot be easily written in terms of the local estimates.

References

Kailath, T., A. H. Sayed and B. Hassibi (2000). Linear Estimation. Prentice Hall.