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Abstract

We consider a binary probit model where the latent variable follow a
Gaussian Markov Random Field (GMRF). Our main objective is to derive
an efficient Gibbs sampler for the above model. For this purpose, we first
review two Gibbs samplers available for the classical probit model with
one latent variable. We find that the joint update of variables increases
the rate of convergence. We use these results to derive Gibbs samplers
for the probit model with GMRF latent variables. We discuss three dif-
ferent approaches to Gibbs sampling for the above model. The first two
approaches are direct extensions of the Gibbs sampler for the classical
probit model. The third approach involves a slight modification in the
probit model and suggests that it may be possible to block sample all its
variables at once.

1 Introduction

In this report, we derive Gibbs samplers for the probit regression model with
Gaussian Markov Random Field Latent variables. The probit models are very
useful techniques in statistics, and has found many applications. Various sam-
pling methods exist in the literature for inference using this model [4] [3]. The
classical probit model assumes only one latent variable associated with the mea-
surements, and hence doesn’t take the spatial correlation into account. We
consider a more general case where there are multiple latent variables and are
correlated with each other. There are standard samplers available in literature
(for example in [6]), however there is still a lot of scope to improve on these
samplers.
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2 Probit Model

In this section, we consider the classical version of probit model. Given data
{yt}T

t=1 with each yt ∈ {0, 1}, we have the following binary regression model:

Pr(yt = 1|β) = Φ(xtβ) (1)

where Φ(·) denotes the standard normal cumulative distribution function, β ∈
Rd is the (unknown) latent variable, and xt ∈ R1×d is a (known) row vector.
Further, we define X = [x′

1, . . . , x
′

T ]′ and y = [y1, . . . , yT ]. The task is to infer
β given the data {y,X}.

The likelihood is given as follows:

L(β|y,X) =

T
∏

t=1

[

Φ(xtβ)
]yt

[

1 − Φ(xtβ)
](1−yt)

(2)

We can see that the form of the likelihood is quite complicated because of the
presence of the non-linear function Φ. A simpler formulation can be obtained by
using auxiliary variables as described in [3]. We introduce the auxiliary variables
{zt}T

t=1, and get the following equivalent model:

zt = xtβ + ǫt (3)

yt =

{

1 if zt > 0
0 otherwise

(4)

where each zt ∈ R and ǫt ∼ N (0, 1) (i.i.d. in t)1. Fig. 2 shows the graphs
for these two models. The advantage of using the above form is that it allows
us to perform Gibbs sampling. We now describe and compare the two Gibbs
samplers for the above model. We will now discuss the Gibbs samplers described
in [3] and [4]. Our purpose is to compare these samplers, which will helps us to
understand the modifications necessary for GMRF latent variable model. There
are methods based on the Metropolis-Hastings algorithm. While implementing a
random walk Metropolis-Hastings algorithm, we found that it is sensitive to the
variance increments which can be estimated by using methods like maximum-
likelihood. However this will create a problem for high dimensional model as a
good estimate of variance is difficult to obtain in that case. For this reason, in
this study we focus only on Gibbs sampling. Also from here on, we denote a
whole time-series by the variable itself, for example, z = {z1, . . . , zT }.

2.1 Gibbs sampler I - Albert and Chib (A&C)

The Gibbs sampler described in [3] involves iterative sampling of β|z and z|β.
Assuming a normal prior on the β, β ∼ N (µβ ,Σβ), the conditional distribution
of β given z is a normal distribution (derivation in Appendix A:

p(β|z) = N (β; µ̃β , Σ̃β) (5)

1To denote a normal random variable z, we will use N (z; µ, σ2) or N (µ, σ2) interchangeably.
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Figure 1: Graphs for the Probit model with and without auxiliary variables

Σ̃β = (Σ−1
β + X ′X)−1 (6)

µ̃β = Σ̃β(Σ−1
β µβ + Xz) (7)

The conditional distribution of z given β is a truncated normal (derivation in
Appendix A:

p(zt|β, yt, xt) ∝
{

N (zt;xtβ, 1)I(zt > 0, yt = 1)
N (zt;xtβ, 1)I(zt ≤ 0, yt = 0)

(8)

where I(A) is an indicator variable for an event A. Sampling from a truncated
normal distribution is quite easy in the case when the mean of the parent normal
distribution is close to zero. Various efficient methods are discussed in [5].

For some models, β and z could be highly correlated, which causes the
algorithm to converge slowly. This is in fact a serious issue for high-dimensional
model as we will see in Section 2.3. It is well known that block sampling increases
the mixing of the variables and hence the rate of convergence [4]. We next
describe the a Gibbs sampler which may be useful in such situations.

2.2 Gibbs sampler II - Holmes and Held (H&H)

The Gibbs sampler described in [4] makes use of the following factorization:

p(β, z|y) = p(β|z)p(z|y) (9)

The conditional distribution of β|z (first term in above equation) is given by
Eq.(5) derived in previous section. To obtain p(z|y), we will have to integrate
β from the joint of z and β:

p(z|y) = p(y|z)p(z) = p(y|z)

∫

β

p(z|β)p(β)dβ (10)
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The term under integral is derived in Appendix A, and given in Eq.(42). Sub-
stituting in the above equation and integrating over β, we get:

p(z|y) = p(y|z)N (z; 0, P−1) = Iv(y, z)N (z; 0, P−1) (11)

where P = IT −XΣ̃βX ′, and Iv(y, z) is the vectored version of I defined earlier.
Hence p(z|y) is a multivariate truncated normal distribution of dimension T . It
is now possible to first sample z|y using the above distribution, then sample β
given z using Eq. (5).

There is a serious issue here. It is usually difficult to sample from a high-
dimensional truncated normal distribution. An efficient method to do so is
described in [4]. However the derivation of the method is not2. Hence we skip
details of the procedure. The method works in practice and we have used it for
our implementation.

2.3 Comparison of Gibbs samplers I and II

In this section, we compare the two Gibbs samplers discussed earlier. Our main
criteria for comparison is the rate of convergence. We present results on two
data sets: Pima Indians Diabetes Database [2] and the MNIST digit recognition
data [1]. The Pima dataset is of lower dimensionality than the MNIST data, and
this will allow us to compare the rate of convergence in two different situations.
We expect that for high-dimensional data there should be a significant difference
in the rate of convergence for the two methods.

For the Pima dataset, we have T = 768 measurements (i.e yt), with 8 at-
tributes (i.e. xt). The measurement yt = 1 is interpreted as “tested positive for
diabetes.” The problem is to find a “common cause” of the disease (which is β
in the case of a probit model). We run the two samplers for 1000 iterations with
the prior N (0, I8) on β. Fig. 2 shows the mean of β and samples of β1 found
using the two Gibbs samplers. We can see that the means are almost the same
for both the methods. There is also not much difference in the mixing of the two
variables, however H&H shows slightly better mixing than A&C. Histograms of
β1 and β7 are also shown in Fig. 2 which are almost the same. We see that for
this low-dimensional data, there is not much difference in the performance of
the two samplers. However it seems that the H&H is better in mixing. Next we
present result for the high dimensional data and we will see that H&H is indeed
better in mixing.

We consider the 189 images of digits 2 and 3 in the MNIST dataset, each of
size 16 × 16. We vectorize the images into vectors of length 256 (i.e. d = 256).
Our goal is to find β which is of size 256. We run the two Gibbs samplers for
300 iterations with the prior N (0, I256) on β. Fig. 3 shows the mean of β after
300 iterations. Both of the methods converge to the same image, but results for
H&H are better than A&C3. This is further confirmed in Fig. 4 which shows

2The technical report quoted in [6] page 159, for the derivation is not accessible to the
author till the date this report is written

3The reader may argue whether this is a “good” feature image, however classification with
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Figure 2: (Right) Mean of β and samples for β1 with A&C and H&H. (Left)
Histogram of β1 and β7 with A&C and H&H

Template Images H&H A&C

Figure 3: Template images and mean of β with A&C and H&H

the convergence of the mean with iterations. It is clear that H&H converges
much faster than A&C. Finally Fig. 4 shows the histogram of some instances
of β. We can clearly see that mixing in H&H is better than A&C.

3 A probit model with GMRF latent variables

We now consider an extension of the probit model such that when β is a Gaussian
Markov Random Field (GMRF). Let {βt}T

t=1 be a GMRF with the following
distribution:

p(β1, . . . , βT |α) ∝ exp
[

− 1

2

T
∑

t=2

(βt − βt−1)
2

α
+

1

α
β′

1β1

]

(12)

test results (not presented in this report) show that the this β gives satisfactory classification
results
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Figure 4: (Top) Convergence of mean (Bottom) Histogram of few instances of
β

where each βt ∈ Rd and α > 0 is a parameter for the covariance of the con-
ditional distribution βt|βt−1 (we will refer to it as the variance of the GMRF).
There are other extensions of the above model with higher order dependence or
cyclic dependence (for example see [6], page 109). These distributions can be
obtained with slight modifications in the above equation. The distribution can
be more conveniently expressed in the form of a Gaussian distribution :

p(β) ∝ N (0, αQ−1) (13)
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where Q is a tridiagonal matrix of size Td × Td,

Q =



















2I −I 0 . . . 0 0
−I 2I −I . . . 0 0
0 −I 2I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2I −I
0 0 0 . . . −I I



















(14)

where I is an identity matrix of size d × d. Given β, we define an auxiliary
variable probit model as follows:

zt = xtβt + ǫt where ǫt ∼ N (0, 1) (15)

yt =

{

1 if zt > 0
0 otherwise

(16)

We also assume an inverse gamma4 prior on variance α ∼ IG(a, b). Fig. 3
shows the graph of the above model. β in the classical probit model is now
replaced with a process correlated in t. Each of the βt is correlated with an
auxiliary variable. As dimensionality is increased, (compared to the probit
model discussed in Section 2), we are likely to face more trouble with mixing in
Gibbs sampling. Hence we would like to have more block sampling than single
site sampling.

4We assume the form IG(α, β) for Inverse Gamma
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3.1 Gibbs sampler I

In this section, we describe a Gibbs sampler similar to A&C. This is discussed
in [6]. We first sample z|β, α, y and then block sample β, α|z, y. The conditional
distribution of z|β is same as before (Eq. (8)) except for the fact that the mean
of the truncated normal random variable at time t depends on βt:

p(zt|βt, yt) ∝
{

N (xtβt, 1)I(zt > 0, yt = 1)
N (xtβt, 1)I(zt ≤ 0, yt = 0)

(17)

To derive the conditional distribution of β, α|z, y, we first define:

X̃ =











x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xT











(18)

The size of X̃ is T × Td. Then p(z|β, y) = N (X̃β, 1)Iv(z, y).

p(β, α|z, y) ∝ p(z|y, β, α)p(β|α)p(α) (19)

∝ p(y|z) exp
[

− 1

2

{

(z − X̃β)′(z − X̃β) +
1

α
β′Qβ

}]

p(α)(20)

= exp
[

− 1

2

{

(β − µ)′Σ(β − µ) + z′P̃ z
}]

p(α)p(y|z) (21)

∝ N (β;µ,Σ) · IG(α; a, b) · N (z; 0, P̃−1)Iv(z, y) (22)

where Σ−1 = α−1Q + X̃ ′X̃, µ = ΣX̃ ′z, P̃ = IT − X̃ΣX̃ ′. The third step is in
the above derivation is obtained by completing squares for β. We sample from
α and then β using the following joint distribution:

p(β, α|z, y) = N (β;µ,Σ) · IG(α; a, b) (23)

We can see that the sampling β using this distribution is not efficient as
it involves the inversion of Σ which will be very high dimensional. A better
way is to use Kalman smoother to find the mean and the variance of marginal
p(βt|z, α).

We apply the above algorithm to Tokyo rainfall data. The data set is a
record of daily rainfall during the years 1983 and 1984, and we wish to infer the
the underlying probability of rainfall for each day (so β is of size 366). Also for
t = 60 (February 29) there is only one measurement available. So we have total
T = 366 + 365 = 731 measurements. We use the following GMRF for represent
the β:

p(β|α) ∝ exp
[

− 1

2

T
∑

t=3

(βt − 2βt−1 + βt−2)
2

α
+

1

α
(β′

2β2 + β′

1β1)
]

(24)

The two measurements for each day are denote by yi1 and yi2 for which we
have two auxiliary variables zi1 and zi2, and conditional distribution of these
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Figure 6: Mean of β for different priors on α.

variables given β is given as follows:

zi1 = βt + ǫ1t (25)

zi2 = βt + ǫ2t (26)

where ǫk
t are standard Normal distribution.

Fig. 6 shows the results for 10000 iterations. We used two different priors
for αIG(0.1, 0.0001) IG(0.1, 0.0001) (The first prior is used in [6]). We see that
given a good prior the algorithm converges, however it is sensitive to the prior.
This is expected as sampling from prior is not a good idea. When β and α are
not strongly correlated, it is more sensible to sample α|β and then block sample
β, z|α, y using a method similar to H&H. In the next section we describe two
other possibilities for Gibbs sampler.

3.2 Gibbs sampler II

A possible approach is to follow H&H approach. We block sample z, β|y, α and
then sample α|β. The conditional distributions are given as follows:

p(α|β) ∝ p(β|α)p(α) = IG(α; a, b +
1

2
β′Qβ) (27)

p(z, β|y, α) ∝ p(β|z, α)p(y|z) = N (β;µ,Σ) · N (z; 0, P̃−1)Iv(z, y) (28)

where the last step is obtained using Eq. (22). Similar to Section 2.2, we have
a high-dimensional truncated normal random variable, and we need an efficient
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method to sample from this distribution (similar to the method discussed in
[4]).

3.3 Gibbs sampler III

Another approach can be to sample from the joint distribution of z, β, α|y.
However sampling from that distribution is intractable because of introduction
of α. One approach can be to modify the auxiliary variable model by making
zt dependent on α as follows :

zt = xtβt +
√

αǫt (29)

This means that the variance of zt is now α. Now the probit link corresponding
to this model is Φ(Xtβt/

√
α). This means that the probit link is a function of

βt/
√

α. This definitely puts a serious problem on the model identification, as all
β and α pair with same ratio will correspond to the same model. Although we
are not clear on this issue, we outline the procedure here to demonstrate that
this modification makes sampling from joint possible.

The joint of (β, α, z)|y is given by the following equation:

p(β, α, z|y) ∝ p(y|z)p(z|β, α)p(β|α)p(α) (30)

= Iv(y, z) · N (z; X̃β, αIT ) · N (β; 0, αQ−1) · IG(α; a, b) (31)

∝ Iv(y, z) · N (z; 0, αP̄−1) · N (β; µ̄, αΣ) · IG(α; a, b) (32)

Last step is obtained by completing the squares for β. We have Σ̄ = Q + X̃ ′X̃,
m̄u = Σ̄X̃ ′z, P̄ = IT − X̃Σ̄X̃ ′. Integrating out β, we get:

p(α, z|y) = Iv(y, z) · N (z; 0, αP̄−1) · α−d/2 · IG(α; a, b) (33)

= Iv(y, z) · α−T/2 exp
[

− 1

2α
z′Pz

]

· IG(α; a, b) (34)

= Iv(y, z) · IG
(

α; a +
T + d

2
, b +

1

2
z′Pz

)

(35)

In the above steps we have just collected the terms for α and found the in-
verse gamma distribution. Integrating out α, we get p(z|y). Hence we get the
following conditional distributions:

p(z|y) = Iv(y, z) · (b +
1

2
z′Pz)−(a+(T+d)/2) (36)

p(α|z) = IG
(

α; a +
T + d

2
, b +

1

2
z′Pz

)

(37)

p(β|α, z) = N (β; µ̄, αΣ) (38)

Till now it is not clear to us if it is easy to sample from the p(z|y), which is a
multi-dimensional truncated distribution. However these distributions can be
used to get a block update (z, β, α)|y, which will increase the mixing in the
algorithm. We hope to do more work on this in future.
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4 Conclusions

In this report, we reviewed and derived Gibbs samplers for classical probit
model. We found that joint update of variables increase the rate of conver-
gence. We discussed three different approaches for Gibbs sampling of the probit
model with GMRF latent variable. For the second approach, we need to find
an efficient way of sample from the truncated multi-dimensional Normal ran-
dom variable. Similarly, for the third approach we need to find how does the
modification affect the probit model and whether it’s possible to sample from
the distribution given by Eq. 36.

Acknowledgment I would like to thank Kevin Murphy and Arnaud Doucet
for their guidance, and Mark Schmidt for his code.

A Derivation of p(β|z)

This section describes the derivation done in Section 2.1. First we derive p(β|z):

p(β|z) ∝ p(z|β)p(β) (39)

∝ exp
[

− 1

2

{

(z − xtβ)2 + (β − µβ)′Σβ(β − µβ)
}]

(40)

= exp
[

− 1

2

{

(β − µ̃β)′Σ̃β(β − µ̃β) + z′Pz
}]

(41)

∝ N (β; µ̃β , Σ̃β)N (z; 0, P−1) (42)

where the third step is just completing the squares for β. Here Σ̃β and µ̃β are

as described in Eq. (6),(7) and P = IT −XΣ̃βX ′. The distribution of z will be
useful for the derivation of Gibbs sampler II described in Section 2.2.

For p(z|β, y,X), we first note that :

p(z|β, y,X) ∝ p(y|z)p(z|β,X) =
T

∏

t=1

p(yt|zt)p(zt|β, xt) (43)

Hence for each t, zt a truncated version of standard Normal distribution with
mean xtβ.
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