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Our objective is to check the consistency1 of the linear Gaussian filters. Suppose we
have an unbiased estimate x̂t of xt with covariance Pt , obtained using a linear Gaussian
filter. Then the error et = xt − x̂t will be distributed as N (0,Pt). For such cases
(unbiased estimate), the consistency means that the error statistically corresponds to it’s
covariance matrix Pt , the filter is said to be consistent(in other words, sample variance
approaches the Pt as number of samples goes to infinity).

As discussed in (Bar-Shalom and Fortmann 1988), one measure of consistency is
the normalized state error squared variable, defined as,

εt = eT
t P−1

t et (2)

εt is χ2(n), where n is equal to number of states, i.e. dim(xt). In addition, E(εt) =
dim(xt), which can be easily proved:

E(εt) = E(eT
t P−1

t et) = E[trace(P−1
t eteT

t )] = trace[P−1
t E(eteT

t )]

= trace[P−1
t Pt ] = dim(xt) (3)

Instead of checking the consistency for et , we can test whether εt follows a Chi-
square distribution or not, which will be comparatively easier as it is a scalar. This test
can be done by using the confidence interval, as described in (Blackman 1986). The
confidence intervals are defined by placing upper and lower limits so that:

Pr [ fL(α , ε̄t) ≤ εt ≤ fU (α , ε̄t)] = 1−α (4)

where ε̄t is an estimate, obtained statistically with Monte Carlo simulations and α is
the allowable probability of error (note!). Based upon simulation a claim could be
made that the value lies within the interval with probability 1−α . This relationship is
either true or not, and performing many Monte Carlo simulations will tell us whether
the quantity falls withing the interval with a probability of 1−α or not.

The test can be summarized as follows:

1. Choose a confidence interval α (for e.g. 0.05). Note that it’s the probability of
error.

1The estimate is said to be consistent (Kay 1993), if for any ε > 0, (Here N is the number of Monte-Carlo
simulations)

lim
N→∞

Pr((x̂t −xt) > ε) = 0 (1)
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2. Perform a Monte Carlo simulation for N (greater than 50), and compute the mean

ε̄t =
1
N

ΣN
i=1ε i

t (5)

3. Find the limits for a Chi-square distribution as follows (n = (dim)xt ),

Nε̄t

χ2(n,α/2)
≤ εt ≤

Nε̄t

χ2(n,1−α/2)
(6)

4. Check whether εt within the interval for all time points.
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