Fundamentals of Machine Learning (Part I)

Mohammad Emtiyaz Khan
AIP (RIKEN), Tokyo
http://emtiyaz.github.io
emtiyaz.khan@riken.jp

April 12, 2018

(C)Mohammad Emtiyaz Khan 2018

Goals

Understand (some) fundamentals of Machine learning ${ }^{1}$. of part I
Part I : Understand the basic set-up to analyze data under a machine-learning framework.

1. Before Machine Learning.
2. ML Problem: Regression.
3. Model: Linear Regression.
4. Cost Function: MSE.
5. Algorithm 1: Gradient Descent.
6. Algorithm 2: Least Squares.
of part II
Part II : Understand what can go wrong when learning from data and how to correct it.
7. Challenge: Overfitting.
8. Solutions: Regularization.
9. Bias-Variance Decomposition.
10. Recent Advances.
[^0]
1 Before Machine Learning

Acquiring Data

Data is the most important component of modern Machine Learning. There are many important steps that can have a huge impact on the performance of a machinelearning system. To name a few: data collection, cleaning, validation, pre-processing, and storage.

Picture taken from "Doing data science".

Defining an ML problem
Once we have some data, the next step is to re-define the real-world problem in the context of data, and then to convert it to a machinelearning problem.

ML problems can be categorized into 3 main types: supervised, unsupervised, and reinforcement learning. In practice, a successful end-toend system might require a combination of these problems.

In this course, we will focus on supervised learning.

Goal: Define regression and its two goals.

2 ML Problem: Regression

What is regression?

Regression is to relate input variable to the output variable, to iither predict outputs for new inputs and/or to understand the effect of the input on the output.

Dataset for regression

In regression, data consists of pairs $\left(y_{n}, \mathbf{x}_{n}\right)$, where y_{n} is the n 'th output and \mathbf{x}_{n} is a vector of D inputs. Number of pairs N is the data-size and D is the dimensionality.
Examples of regression
$\left\{\begin{array}{l}\square x_{11} \square^{x_{21}} \\ \square \\ \square x_{12} \square \\ x_{22} \\ \square\end{array} \cdot \cdots \cdot \square^{x_{N 1}}\right.$

(a) Height is correlated with weight. Taken from "Machine Learning for Hackers"
y_{n}

$D=3$
$\cdot X_{n 3}$
(b) How does advertisement in TV, radio, and newspaper affect sales? Taken from the book "An Introduction to statistical learning"

Two goals of regression

In prediction, we wish to predict the output for a new input vector, e.g. what is the weight of a person who is 170 cm tall?

In interpretation, we wish to understand the effect of inputs on output, e.g. are taller people heavier too?

The regression function

For both the goals, we need to find a function that approximates the output "well enough" given inputs.

$$
y_{n} \approx f\left(\mathbf{x}_{n}\right), \text { for all } n
$$

Additional Notes
Prediction vs Interpretation
Some questions to think about: are these prediction tasks or interpretadion task?

1. What is the life-expectancy of a person who has been smoking for 10 years? Prediction
P 2. Does smoking cause cancer?
I 3. When the number of packs a smoker smokes per day doubles, their predicted life span gets cut in half?
p^{4}. A massive scale earthquake will occur in California within next 30 years.
$\boldsymbol{p}^{\text {5. More than } 300 \text { bird species in north America could reduce their }}$ habitat by half or more by 2080 .

Goals: Define regression and its two goals.

Goal: Defime and describe linear regression.

3 Model: Linear Regression

What is it?

Linear regression is a model that assumes a linear relationship between inputs and the output.

Why learn about linear regression?

Plenty of reasons: simple, easy to understand, most widely used, easily generalized to non-linear models. Most importantly, you can learn almost all fundamental concepts of ML with regression alone.

Simple linear regression
With only one input dimension, it is simple linear regression.

$$
y_{n} \approx f\left(\mathbf{x}_{n}\right):=\beta_{0}+\beta_{1} x_{n 1}
$$

Here, β_{0} and β_{1} are parameters of the model.

Multiple linear regression
With multiple input dimension, it is multiple linear regression.

$$
\begin{align*}
y_{n} & \approx f\left(\mathbf{x}_{n}\right) \\
& :=\beta_{0}+\beta_{1} x_{n 1}+\ldots+\beta_{D} x_{n D} \\
& =\widetilde{\mathbf{x}}_{n}^{T} \boldsymbol{\beta} \tag{1}
\end{align*}
$$

Learning/estimation/fitting
Given data, we would like to find $\boldsymbol{\beta}=\left[\beta_{0}, \beta_{1}, \ldots, \beta_{D}\right]$. This is called learning or estimating the parame-

$$
\underset{\text { Prediction }}{\underline{\text { Pa }}} \underset{8}{2}=0+\frac{1}{2} \times 190 \mathrm{~cm} \leftarrow \text { New person }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { True } \\
\text { weight } \sim \text { Predicted }
\end{array}=\beta_{0}+\beta_{1} \text { height } \\
& 100 \mathrm{~kg} \approx 100=0+\frac{1}{2} \times 200 \mathrm{~cm} \\
& 701 \approx 85=0+\frac{1}{2} \times 170 \mathrm{~cm} \\
& 9011 \approx 105=0+\frac{1}{2} \times 210 \\
& 60 \prime \approx 80=0+\frac{1}{2} \times 160
\end{aligned}
$$

Additional Notes
$p>n$ Problem
Consider the following simple situation: You have $N=1$ and you want to fit $y_{1} \approx \beta_{0}+\beta_{1} x_{11}$, i.e. you want to find β_{0} and β_{1} given one pair $\left(y_{1}, x_{11}\right)$. Is it possible to find such a line?

This problem is related to something called $p>n$ problem. In our notatron, this will be called $D>N$ problem, i.e. the number of parameters exceeds number of data examples.

Similar issues will arise when we use gradient descent or least-squares to fit a linear model. These problems are all solved by using regularization, which we will learn later.

Col: What is MSE and what could go soong with it.

4 Cost Function: MSE

Motivation

Consider the following models.
1-parameter model: $y_{n} \approx \beta_{0} \checkmark$
2-parameter model: $y_{n} \approx \beta_{0}+\beta_{1} x_{n 1}$
lear h
How can we estimate (or guess) valuses of $\boldsymbol{\beta}$ given the data \mathcal{D} ?
$D=\left\{y_{1}, y_{2}, \ldots y_{N}\right.$
What is a cost function?

$$
\left.\underline{x}_{1}, \underline{x}_{2}, \cdots \underline{x}_{N}\right\}
$$

Cost functions (or utilities or energy) are used to learn parameters that explain the data well. They define how costly our mistakes are.

Two desirable properties of cost functions

When y is real-valued, it is desirable that the cost is symmetric around 0 , since both +eve and -ve errors should be penalized equally.

Also, our cost function should penalize "large" mistakes and "verylarge" Inistakes almost equally.

$y_{\text {true }}-y_{\text {est }}$
Mean Square Error (MSE)
MSE is one of the most popular costed
function.
MS ($\boldsymbol{\beta}):=\frac{1}{2 N} \sum_{n=1}^{n}\left[y_{n}-f\left(\mathbf{x}_{n}\right)\right]^{2}$

Additional Notes
A question for cost functions
Is there an automatic way to define loss functions?
Nasty cost functions: Visualization
See Andrej Karpathy Tumbler post for many cost functions gone "wrong" for neural network. http://lossfunctions. tumblr.com/.

Goal: What is MSE and what could go wrong with it.

Goal: Derive GD and SGD for linear regression
5 Algorithm 1: Gradient Descent
Learning/estimation/fitting $\underset{\left(\beta_{0}\right)}{\left(\mathcal{D}^{2}\right)}$
Given a cost function $\underline{\mathcal{L}(\boldsymbol{\beta})}$, we wish to find $\boldsymbol{\beta}^{*}$ that minimizes the cost: $\min _{\boldsymbol{\beta}} \mathcal{L}(\boldsymbol{\beta}), \quad$ subject to $\boldsymbol{\beta} \in \mathbb{R}^{D+1}$
This is learning posed as an optimization problem. We will use an algorithm to solve the problem.

Computation Complexity: Number of computation
Grid search
Grid search is one of the simplest algorithms where we compute cost over a grid (of say M points) to find the minimum. This is extremely simple and works for any kind of loss when we have very few prameters and the loss is easy to compute.
for $\tilde{\beta}_{1}=1,2, \ldots 100$ for $\beta_{0}=1,2, \ldots 100$
for $n=1,2, \ldots, 4$

For a large number of parameters, however, grid search has too many "for-loops", resulting in exponential computational complexity. Choosing a good range of values is another problem.
Are there any other issues? You might miss the minimum.

Follow the gradient
A gradient (at a point) is the slope of the tangent (at that point). It points to the direction of largest increase of the function.

For 2-parameter model, MSE is shown below.

(I used $\mathbf{y}^{T}=[2,-1,1.5]$ and $\mathbf{x}^{T}=[-1,1,-1]$).

Math
Stationary pt
Math
$\begin{aligned} & \text { This is the } \\ & \text { Gradient }\end{aligned} \rightarrow \frac{\partial \mathcal{L}}{\partial \beta}=\left[\begin{array}{l}\frac{\partial \mathcal{L}}{\partial \beta_{0}} \\ \frac{\partial \mathcal{L}}{\partial \beta_{1}} \\ \frac{\partial \alpha}{\partial \beta_{2}}\end{array}\right]$

Batch "gradient descent
To minimize the function, take a step in the (opposite) direction of the gradient

$$
\boldsymbol{\beta}^{(k+1)} \leftarrow \boldsymbol{\beta}^{(k)}-\alpha \frac{\partial \mathcal{L}\left(\boldsymbol{\beta}^{(k)}\right)}{\partial \boldsymbol{\beta}}
$$

where $\alpha>0$ is the step-size (or
learning rate).

Q: What is the best
Gradient descent for 1-parameter model to minimize MSE: α for 1-parameter

$$
A: \alpha=1
$$

$$
\beta_{0}^{(k+1)}=(1-\alpha) \beta_{0}^{(k)}+\alpha \bar{y} \quad \text { Minimum at } \beta_{0}-\bar{y}=0
$$

Where $\bar{y}=\sum_{n} y_{n} / N$. When is this sequence guaranteed to converge?

Gradients for MSE

$$
\beta_{0}^{*}=\bar{y}
$$ meter

model?

Answer this on your own.

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{\beta})=\frac{1}{2 N} \sum_{n=1}^{N}\left(y_{n}-\widetilde{\mathbf{x}}_{n}^{T} \boldsymbol{\beta}\right)^{2} \tag{3}
\end{equation*}
$$

then the gradient is given by,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=-\frac{1}{N} \sum_{n=1}^{N}(\underbrace{y_{n}-\widetilde{\mathbf{x}}_{n}^{T} \boldsymbol{\beta}}_{\text {error }}) \widetilde{\mathbf{x}}_{n} \tag{4}
\end{equation*}
$$

What is the computational complexity of batch gradient descent? Answer this on your own.

Stochastic gradient descent (SGD)
When N is large, choose a random This is pair $\left(\mathbf{x}_{i}, y_{i}\right)$ in the training set and "Unbiased" gradient,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}} \approx-\frac{1}{N}[N(\underbrace{\left(y_{i}-\widetilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}\right.}_{\text {error }}) \widetilde{\mathbf{x}}_{i}] \tag{5}
\end{equation*}
$$

Using the above "stochastic" gradiint, take a step:
$\boldsymbol{\beta}^{(k+1)}=\boldsymbol{\beta}^{(k)}+\alpha^{(k)} \underbrace{\left(y_{i}-\widetilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}^{(k)}\right) \widetilde{\mathbf{x}}_{i}}$
gradient of $i^{\text {th }}$ data point
What is the computational complexity?
\rightarrow Derive on your own.
For convergence, $\alpha^{k} \rightarrow 0$ "appropriately". One such condition called Robbins-Monroe condition suggests

11
Don't drink to take α^{k} such that:

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha^{(k)}=\infty, \quad \sum_{k=1}^{\infty}\left(\alpha^{(k)}\right)^{2}<\infty \tag{6}
\end{equation*}
$$

One way to obtain such sequence is $\alpha^{(k)}=1 /(1+k)^{r}$ where $r \in$ $(0.5,1)$.

Whes is the problem difficult to optimize?
5.1 Algorithm 2: Least Squares

In rare cases, we can compute the minimum of the cost function
"Ill-conditioned problems" analytically. Linear regression using MSE is one such pase. The solution is obtained using formal equations. This is called least squares.

To derive the equation, we use the optimality conditions. See the levture notes for Gradient Descent.

$$
\frac{\partial \mathcal{L}\left(\boldsymbol{\beta}^{*}\right)}{\partial \boldsymbol{\beta}}=
$$

Using this, derive the formal aquatron for 1-parlameter model.

$$
\frac{\partial \mathcal{L}}{\partial \underline{\beta}} \approx \sum_{n} \underbrace{\left(y_{n} \tilde{x}_{n} \beta\right.}_{\substack{\text { error } \\ e_{n} * \tilde{x}_{n}}}) \tilde{x}_{n}
$$

When x_{n} 's are similar,
 gradients are not informative, which will make the problem harder. This is related to illiconditioning, whis is
D $\times N$ Linearly-dependent column ? related to
lead to "rank deficient" snatrix.
e.g. when $a_{n} x_{n}$ is approximately equal to another x_{m}.
This could happen easily, e.g. two people of same height-weight.

Normal equations

Recall the expression of the gradient for multiple innear regression:
$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\beta}}=-\frac{1}{\boldsymbol{V}} \widetilde{\mathbf{X}}^{T} \mathrm{e}=-\frac{1}{N} \widetilde{\mathbf{X}}^{T}(\mathrm{y}-\widetilde{\mathbf{X}} \boldsymbol{\beta})$
Set it to zelp to get he normalequations for linear regression.
$\widetilde{\mathbf{X}}^{T} \mathrm{e}=\widetilde{\mathbf{X}}^{T}(\mathbf{y}-\tilde{\mathbf{X}} \boldsymbol{\beta})=0$
implyigg that the eqror is orthogonal to rows of $\widetilde{\mathbf{X}}^{T}$ and columns of $\widetilde{\mathbf{X}}$.

Geometric Interpretation

Denote the d^{\prime} th column of by $\overline{\mathbf{x}}_{d}$.
$\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{N}\end{array}\right], \widetilde{\mathbf{X}}=\left[\begin{array}{cccccc}1 & x_{11} & x_{2} & \ldots & x_{1 D} \\ 1 & x_{21} & x_{22} & \ldots & x_{2 D} \\ \vdots & \vdots & \vdots & . & \vdots \\ 1 & x_{N 1} & x_{N 2} & \cdots & x_{N D}\end{array}\right]$
The normal equations suggest to choose a vector in the span of $\widetilde{\mathbf{X}}$. The following figure illustrates this (taken from Bishop's book).

Least-squares

When $\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{X}}^{\text {in invertible, we have }}$ closed-form expyession for the mini-
mum.
$\boldsymbol{\beta}^{*}=\left(\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^{T}{ }^{\mathbf{y}}$
We can predict values for a new \mathbf{x}_{*}.

$$
\hat{y}_{*}=\widetilde{\mathbf{x}}_{*}^{T} \boldsymbol{\beta}^{*}=\widetilde{\mathbf{x}}_{*}^{T}\left(\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^{T} \mathbf{y}
$$

Invertibility and uniqueness

The Gram matrix $\widetilde{\mathbf{X}}^{T} \widetilde{\mathbf{X}}$ is invertible ff $\widetilde{\mathbf{X}}$ has full column rank.

Proof: Assume $N>D$. The fundamental theorem of linear algebra states that the dimensionality of null space is zero for full column rank. This implies that the Gram matrix is positive definite, which implies inImportant: vertibility.

Rank deficiency and ill-conditioning

Unfortunately, $\widetilde{\mathbf{X}}$ could often be rank deficient in practice, e.g. when $D>N$, or when the columns $\overline{\mathbf{x}}_{d}$ are (nearly) collinear. In the later case,
 the matrix is ill-conditioned, leading to numerical issues.

Summary of linear regression

We have studied three methods:

1. Grid search
2. (Stochastic) gradient descent

3 Lens ref

Additional Notes

Implementation

For robust implementation see Sec. 7.5.2 of Kevin Murphy bpok.l.g.

To do

1. Revise linear algebra to understand why $\widetilde{\mathbf{X}}$ needs fo have full rank. Read the Wikipedia page on hank of a matrix.
2. For details on the geometrical interpretation, see Bishop 3.1.2. Howerer, better to dead this after the lecture on "basis-function expansi\&n". Also, note that notation in the book is different. This might make the reading difficult.
3. Understand matrix inversion robust implementation and play with it using the node for labs. Read Kevin Murphy s section ${ }^{\circ}$ 7.5.2 for details.
4. Understand ill-conditioning. Reading about the "condition number" in Wikipedia will help. Also, understanding SVD is essential. Here is another link provided by Dana Kianfar (EPFL) http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf.
5. Work out the computational complexity of least-squares (use the Wikipedia page on computational complexity).
a small change in the input leads to a large change in the bot put.

6 Challenge: Overfitting
Motivation
Linear model can be easily modified to obtain more powerful non-linear model. We can use basis function expansion to get a non-linear regression model, and then use a sequence of these models to construct a deep model.

(1) $\underline{z}_{n}^{(2)}$

$$
z_{n}^{(1)}=B^{(1)} \phi^{(1)} \underline{x}_{n}
$$

$$
Z_{n}^{(1)}
$$

$$
B
$$

Consider simple linear regression. Given one-dimensional input x_{n}, we can generate a polynomial basis.
$\phi\left(x_{n}\right)=\left[1, x_{n}, x_{n}^{2}, x_{n}^{3}, \ldots, x_{n}^{M}\right]$ feature vector
Then we fit a linear model using the original and the generated features:

$$
\widetilde{\phi}\left(x_{n}\right)=\left[1, x_{n}, x_{n}^{2}, x_{n}^{3}\right.
$$

$\begin{aligned} y_{n} & \approx \beta_{0}+\beta_{1} x_{n}+\beta_{2} x_{n}^{2}+\ldots+\beta_{M} x_{n}^{M} \text {. Is this good? } \\ & =\beta^{\top} \phi(x)\end{aligned}$

x
2 layer NN can approximate any.

Overfitting and Underfitting

Overfitting is fitting the noise in addition to the signal. Underfitting is not fitting the signal well. In reality, it is very difficult to be able to tell the signal from the noise.

Which is a better fit?

Try a real situation. Below, y -axis is the frequency of an event and x-axis is the magnitude. It is clear that as magnitude increases, frequency decreases.
"With great power comes great responsibility" - Spiderman's Uncle

Which model is a better fit? blue or red?

Another example: Which model is a better fit? black or red? Data is denoted by circle.

Complex models overfit easily

Circles are data points, green line is the truth \& red line is the model fit. M is the maximum degree in the generated polynomial basis.

If you increase the amount of data, overfitting might reduce.

Occam's razor

One solution is dictated by Occam's razor which states that "Simpler models are better - in absence of certainty."

"Why you don't

Sometimes, if you increase the amount of data, you might reduce overfitting. But, when unsure, choose a simple model over a comneed to be so deep all the time" placated one.

Additional Notes

Read about overfitting in the paper by Pedro Domingos (section 3 and 5 of "A few useful things to know about machine learning"). You can also read Nate Silver's book on "The signal and the noise" (the earthquake example is taken from this book).

7 Solutions: Regularization
What is regularization?
Through regularization, we can penalize complex models and favor simpler ones: $\quad \beta_{0}$ is not in here.

What could be the reason?

$$
\lambda \rightarrow 0
$$

The second term is a regularize (with $\lambda>0$). The main point here is that an input variable weighted by a small β_{j} will have less influence on the output.

Regularization Parameter
The parameter λ can be tuned to reduce overfitting. But, how do you choose λ ?

The generalization error
The generalization error of a learning method is the expected predicdion error for unseen data, ie. mistakes made on the data that we are going to see in the future. This quantifies how well the method generalizes.

A/B testing

It is like your "Exam"

Simulating the future
Ideally, we should choose λ to minimize the mistakes that will be made in the future. Obviously, we do not have the future data, but we can always simulate the future using the data in hand.

Splitting the data Randomly
For this purpose, we split the data into train and validation sets, egg. 80% as training data and 20% as validation data. We pretend that the validation set is the future data.
We fit our model on the training set and compute a prediction-error on (1) Choose a λ the validation set. This gives us an (2) Split data estimate of the generalization error (3) Fit training clata (one instant of the future).

Cross-validation

Random splitting (aka bootstrap) is not an efficient method.

Q. where does it fail?

K-fold cross-validation allows us to do this efficiently. We randomly partition the data into K groups. We train on $K-1$ groups and test on the remaining group. We repeat this until we have tested on all test K sets. We then average the results.

Cross-validation returns an estimate of the generalization error.

Additional Notes

Details on cross-validation are in Chapter 7 in the book by Haste, Ribshirani, and Friedman (HTF). You can also read about bootstrap in Section 7.11 in HTF book. This method is related to random splitting and is a very popular method.

8 Bias-Variance Decomposition

What is bias-variance?

One natural question is how does the test error vary wot λ ? When λ is high, the model underfits, while when λ is small, the model overfits. Therefore, a good value is somewhere in between.

Test error

Simple $\stackrel{\lambda}{\leftarrow}$

Combe

Bias-variance decomposition explains the shape of this curve.

High Variance

Generalization error

Given training data $\mathcal{D}_{\text {tr }}$ of size N, we would like to estimate the expetted error made in future prediction. This error is the generalization error. Below is a definition suppose
 that we have infinite test data $\mathcal{D}_{t e}$,

$$
\operatorname{teErr}\left(\mathcal{D}_{t r}\right):=\underset{\uparrow}{\mathbb{E}} \mathcal{D}_{t e}\left[\left\{\frac{y-f(\mathbf{x})}{\text { all of }}\right\}^{2}\right] \leftarrow \text { Un }
$$

Generalization error is different from ${ }^{\text {ald }}$ future the training error which measures how well you fit the data.

$$
\begin{aligned}
\operatorname{trErr}\left(\mathcal{D}_{t r}\right):=\sum_{n=1}^{N}\left[\left\{y_{n}-f\left(\mathbf{x}_{n}\right)\right\}^{2}\right] \leftarrow & \text { Unknown } \\
& \text { when } N \\
& \text { is large }
\end{aligned}
$$

Errors vs model complexity

As we increase the model complexity, how do these errors vary? The

"If you were God"

 blue line shows training error for a dataset with $N=50$, while the red line shows the generalization error for that dataset.Simple model have high train and generalization error since they have a high bias, while complex model have low train but high generalization error because they have high variance.

Bias-variance decomposition

The shape of these curves can be explained using bias-variance decomposition. The following four points can be explained by using the decomposition:

1. both bias and variance contribute to generalization error.
2. For bias, both model-bias and estimation-bias are important. When we increase model complexity, we increase generalization error due to increased variance.
3. Pegulynizatios inergeses eytiman hias whe ryucing varianle.

9 Recent Advances

 Deep Learning \& OverfittingDeep learning has shown a new (but old) way to combat overfitting. For many applications, more data and deep architecture combined with stochastic gradient-descent is able to get us to a good minimum which generalizes well.

Challenges

There are many challenges ahead. Learning from nasty, unreliable data still remains a challenge (e.g. small sample size, redundant data, non-stationary data, sequential learning).

On the other hand, living beings even young ones - are very good in dealing with such data. How do they do it, and how can we design ML methods that can learn like them?

[^0]: ${ }^{1}$ Some figures are taken from Hastie, Tibshirani, and Friedman's book on statistical learning and also from Chris Bishop's Machine learning book

