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Goals

Understand (some) fundamentals of Machine learning’.

of pm‘t I
Part I : Understand the basic set-up to analyze
data under a machine-learning framework.

1. Before Machine Learning.

2. ML Problem: Regression.

3. Model: Linear Regression.

4. Cost Function: MSE.

5. Algorithm 1: Gradient Descent.

6. Algorithm 2: Least Squares.
of pa«‘t i

Part II : Understand what can go wrong when
learning from data and how to correct it.

6. Challenge: Overfitting.
7. Solutions: Regularization.
8. Bias-Variance Decomposition.

9. Recent Advances.

'Some figures are taken from Hastie, Tibshirani, and Friedman’s book on
statistical learning and also from Chris Bishop’s Machine learning book
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1 Before Machine Learning

Acquiring Data

Data is the most important com-

-_— e

ponent of modern Machine Learn-
ing. There are many important
steps that can have a huge impact
on the performance of a machine-
learning system. To name a few:
data collection, cleaning, validation,
pre-processing, and storage.
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Defining an ML problem

Once we have some data, the next
step is to re-define the teal-world
problem in the context of data, and
then to convert it to a machine-
learning problem.

ML problems can be categorized
into 3 main types: supervised, un-
supervised, and reinforcement learn-
ing. In practice, a successful end-to-
end system might require a combi-
nation of these problems.
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2 ML Problem: Regression

What is regression?

Regression is to relate input vari-
ables to the output variable, to ei- R
ther predict outputs for new inputs
and/or to understand the effect of
the input on the output.
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Dataset for regression W Yo - W
o O 3
In regression, data consists of pairs
’ ’ PR gt o'

(Yn, X,), where y, is the n’th out- =
put and x,, is a vector of D inputs. 0 o o O -
Number of pairs N is the data-size 4 v
and D is the dimensionality. '
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(a) Height is correlated with weight. Taken from

“Machine Learning for Hackers”
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(b) How does advertisement in TV, radio, and newspaper affect sales? Taken from the book ” An

Introduction to statistical learning”

Two goals of regression

In prediction, we wish to predict
the output for a new input vector,
e.g. what is the weight of a person
who is 170 cm tall?

In interpretation, we wish to under-
stand the effect of inputs on output,
e.g. are taller people heavier too?

The regression function

For both the goals, we need to find a
function that approximates the out-
put “well enough” given inputs.

Y, = f(x,), for all n



Additional Notes

Prediction vs Interpretation

Some questions to think about: are these prediction tasks or interpreta-
tion task?

1. What is the life-expectancy of a person who has been smoking for
10 years? /F{QJ; C‘t;on

P 2. Does smoking cause cancer?

3. When the number of packs a smoker smokes per day doubles, their
I S .
predicted life span gets cut in half?

,P 4. A massive scale earthquake will occur in California within next
30 years.

P 5. More than 300 bird species in north America could reduce their
habitat by half or more by 2080.



3 Model: Linear Regression
What is it?

Linear regression is a model that as-
sumes a linear relationship between
inputs and the output.

Vieight

Height

Why learn about linear regression?

Plenty of reasons: simple, easy to
understand, most widely used, eas-
ily generalized to non-linear mod-
els. Most importantly, you can learn
almost all fundamental concepts of
ML with regression alone.




Simple linear regression

With only one input dimension, it is
simple linear regression.

Yo~ F(32) = Bo + Brm

Here, 5y and (; are parameters of
the model. Q
: : : Tol 4 ]
Multiple linear regression @o 1
With multiple input dimension, it is
ple inp ANE

multiple linear regression.

Pl | Xns

Yn ~ f(Xn>
= 5() + lenl + ...+ 5D£Bnp
~T
=X, (1)
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Additional Notes

p > n Problem

Consider the following simple situation: You have N = 1 and you want
to fit y1 = By + Pfix11, i.e. you want to find [y and [ given one pair
(y1, x11). Is it possible to find such a line?

This problem is related to something called p > n problem. In our nota-
tion, this will be called D > N problem, i.e. the number of parameters
exceeds number of data examples.

Similar issues will arise when we use gradient descent or least-squares to
fit a linear model. These problems are all solved by using regularization,

which we will learn later.




4 Cost Function: MSE 40
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Consider the following models.
G0

I-parameter model: y,, ~ 5y v
2-parameter model: vy, &= By + B1xn1

l[ea¥
How can we estimate (or éuess) val-

ues of 3 given the data D? D _ {yl A
= 72,

What is a cost function? X2 3" nbg

Cost functions (or utilities or en-
ergy) are used to learn parameters
that explain the data well. They de-
fine how costly our mistakes are.

Two desirable properties of cost functions

When y is real-valued, it is desirable
that the cost is symmetric around
0, since both +ve and -ve errors
“should be penalized equally.
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Mean Square Error (Mé?E)“ E Ys*2°

MSE is one of the most popular COSI A
function. AW Predicre

N I J T
1 \/ ,
ON Z[yn — f(xn)]

n=1 -

with Y5
Does it have beth the propertieg? In
Yes 97

MSE(B) =

An exercise for MSE L ? 4
3 e withedl Vg
Compute MSE for 1-param model: 7
- o
] & '
L) = 5 S lm — A (2)
n=1 f

Each row contains a y,, and column
is By. First, compute MSE for for
Yy, = {1,2,3,4} and draw MSE as
a function of By (by adding the first
four rows). Then add y, = 20 to

it, and redraw MSE. What do you

observe and why?
—_ M
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Additional Notes

A question for cost functions

[s there an automatic way to define loss functions?

Nasty cost functions: Visualization

See Andrej Karpathy Tumblr post for many cost functions
gone “‘wrong’ for neural network. http://lossfunctions.
tumblr.com/.

12


http://lossfunctions.tumblr.com/
http://lossfunctions.tumblr.com/

5 Algorithm 1: Gradient Descent
oE(le) = ZT"'- z_,‘ (Y,."Fo)

Learning/estimation /fitting

Given a cost function £(3), we wish
to find 3" that minimizes the cost:

min £(3), subject to B € RP*! )

'
/3 —,i‘.:‘f: 7

I 2 3 £ ¢ 6 2>

This is learning posed as an opti-

mization problem. We will use an Lo iy )
algorithm to solve the problem. (MNodel pavawmates

- Cﬁm‘m’\ﬁ‘fﬁ Comp‘eyﬂy‘. Nu-m]ae\' [ Q (o M‘)q"'ﬁkOVl
Grid search BBO(MDN D) (5iq 0
Grid search is one of the simplest 2-’: N, 100 ﬂa‘l‘q‘\'}*)
2l " B A

algorithms where we compute cost fox ,é R
over a grid (of say M points) to find o Po ’°

the minimum. This is extremely for n=1,2,-- 4-

simple and works for any kind of

loss when we have very few param- Comp e (_2-{2. O(D)

eters and the loss is easy to compute. erd r’;‘rp
end n- "n(c

For a large number of parameters,
however, grid search has too many
“for-loops”, resulting in exponential
computational complexity. Choos-
ing a good range of values is another
problem.

Are there any other issues? You ’m;ﬂ""t ™M S5 the

AN U
13



Follow the gradient

A gradient (at a point) is the slope
of the tangent (at that point). It
points to the direction of largest
increase of the function.

For 2-parameter model, MSE is J
shown below. s} ationavy P—t
(Tused y*' = [2,-1,1.5] and xT = [-1,1, —1]). Mqﬁ\

160~
140
1204
100 -\
80\

N\
60
40

20+

0=l
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Batch“gradient descent ' ﬁ A F - o 2 B‘Q(@)

To minimize the function, take a b/g
step in the (opposite) direction of Ck+> 0

the gradient P< B . ﬁ Y)

0L(BY)
(k+1) (k) _
P —p @ 00 effor

S4 Q‘D—Scze
where o > 0 is the step-size (or

learning rate). Q W[\at 'S ’ﬁr\e ‘o@St
o/, {lof Q,Pamme"‘ev

Gradient descent for 1-parameter A

model to minimize MSE: A ozl )
ﬁ(lﬁ_l) <1 — Oé)ﬁo + ay Mmumum qt ﬂj Y D

Where gy = > y,/N. When is this #’ro - '\—/

sequence guaranteed to converge?

N .
Gradients for MSE Answef this on yD‘ﬂ’
OWN -

N

LB = 5>~ X8 (3

then the gradient is given by,

(?lea,ge devive this

a_ﬁz_ii(y _iT )i (4) oh >/oq{ oWMN.
813 N n—1 \/\/\/

CYro( .
What is the computational complex- &« Answev 'H\l& on
ity of batch gradient descent? Youy oWN .
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Stochastic gradient descent < SG D>
When N is large, choose a random  Thyg 1S

pair (x;,y;) in the training set and UnLiaSe J ”3#\4‘-% -b/

approximate the rai:cti{ie t: 4N
wi <L
oL | LREPY /meam]r\g tat 1t's
Cowect oyv a\refaa‘.e-

—~-—— [Ny, — %, Nz’] 3
55~ v IV -xBx] 6
exvor
Using the above “stochastic” gradi-

ent, take a step:

I@(k+1) — B(k) +a®(y; — gZT Nz, . .
<\y/—\/'\)/ a\(a&eu't °£ L/ﬂ" A(‘q Fbm‘t

What is the computational com-

plexity? ~ Derive on Yow( oM -

For convergence, o — 0 “appro- 4’\
priately”. One such condition called (!

Robbins-Monroe condition suggests — [)gw / { &—{;n ](
to take o such that: /]

. ond dvive
L—

ioz(k) = 00, Z(a(k))Q < 00
k=1

! 6 Walk S(ow’y.

One way to obtain such sequence
is o) = 1/(1 + k)" where r €
(0.5, 1).

RQCITQSS}OV\ —> Modeﬂ — (ost —= AL}M’H\M
L\‘V\ RQ% MSE G’JGJJW{;

d?S (en
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Whes 15 the Pwlo\em/ diﬁ}(,icul’f + oH{miz@Z
5¢1 Algorithm 2: L\east %quares ~J L
-ConAuLoneoq

In\ rare cases\ we can comhpute ! /—nl | "
the \minimum the cost funltion wa ems
analyttically. Lindar regression ysing ) oQ

MSE \s one such ¢ase. The solgtion

Z (y T >~
— -X X
is obtdined using formal equations. a ~ "o /en
This is\called least kquares. {é L

*

To derivg the equatjon, we use the En * Zn
optimality conditiony. See the lec- g Scalay r
ture notes\for Gradieht Descent. F f(\\,/ (J# 1

9B HLE DH
Using this, derive the lormal equa- D1 ) . - la
tion for 1-parameter moxel. S When X, 5 are Smular,

— N o _/ 3{0\44‘@ n+5 ave mt :nﬁo-
1 amahve | which will

2

}N male fhe Fra(olem harder-
| - This 5 telafed 1o ill-
S ~ {conditioning | whis is

Y xn L;y\ea\'(ly—gkeron(len‘t (DI%M\S?f@lat?d 'f'p 1

Qlead o urm\k J(;’Cg.dey\t ’ s0 abrex -

e'%' when  an Xy 15 alo]:wx?maie[y eciuqlh:
nmﬂev Xm-

. . two OPlC’ 0,(
This (Ouu L‘U\DF@Y\ ea§+|y,@~3- SG,MP: ke{a"\‘t"m;ﬁ(i‘



~T ~
to rows of X and cdblumns of X.
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Geometric Interpretation

Denoteé\the d’th column of X by x,.
B 1 oay 2 Z1p |

Y2 I o1 oo

R N p

Least-sguares

When X X 1§ invertible, we have
closed-form expyession for the mini-
U,

~T~ =T
B =(X X)X
We can predict values for a new x,.
~ o o ~T~_ =T
g =%08" =% (X X)Xy

19



Invertibility and uniqueness

The~ Gram matrix )NCT)N( 1s invertible
iff X has full column rank.

Proof: Asstrme—A———P—Fe—fumns ‘ImP 0"‘\“\'\%‘
damental theorem of linear algebra

states that the dimensionality of null T 1 wi H lO e
space 18 zero for full column rank. ~ \
This implies that the Gram matrix ' ,l_\,‘ ¢ @Yam
U . T 14 ,
is positive definite, which implies in-

vertibility.

Rank deficiency and ill-conditioning

Unfortunately, X could often be {:
rank deficient in practice, e.g. when T ‘oobﬂla"{l

D > N, or when the columns x,; are

(nearly) collinear. In the later case, 4‘/

the matrix is ill-conditioned, leading

to numerical issues.

Summary of linear regression

We have studied three methods:

1. Grid search

2. (Stochastic) gradient descent
3 Least—comperes-

20



Additional Notes

Implementation

Theye are many Ways to implement matrix inversion, but using QR de-
composition is one ¥f the most robust ways. Matlab’s backdlash opprator
(

impleents this (an§ much more) in jugt one line.

inv(X"xX)\x (X"xy)
pinv (X'*X)\ » (X'xy)
(X'*X) \ (X'*y)

B it using the dode for labs.
(

For robust iﬁnplementatio see Sec. 7.5.2

expansiyn”. Also, notg that notation in thg book is differen\t. This
might make the readiny difficult.

3. Understandmatrix inversiyn robust implemendation and play with
ad Kevin Murphy’s section 7.5.2 for

details.

ber” in Wikipedia will help. Also, understanding SVD is essen-
tial. Here is another link provided by Dana Kianfar (EPFL)

http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf.
5. out the cqmputatipnal complexity of 1eas{squ’a\res (use the

K\i\g 4. Understand ill-conditioning. Reading about the “condition num-

Wo
Wikipedia page dn comp ationa}%)mple ity).

)

o small Changoin the l\n{)qt (eaols b a Zarj;e

chonge in Y e &bt put:



http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf

6 Challenge: Overﬁttlr)lg
(2

-
Motivation \) \L
Linear model can be easily modified
to obtain more powerful non-linear (\) = Y\
model. We can use basis function 'B Z(I)‘ ’Bc?ﬁx
expansion to get a non-linear regres- \\‘ l n - -
sion model, and then use a sequence o
of these models to construct a deep 2.<n L, va

model. {é = ‘gst;(gv)
! P\l y

Consider simple linear regression.\
Given one-dimensional input z,,, we il
can generate a polynomial basis.

o(x,) = (1, zp, xi, x?l, el x%] Fea‘fu.re VQC+Of

3.
Then we fit a linear model using the %X,\) _;[ i ) xv\ ) xn’), Xn
)

original and the generated features:

Yn R 50+51%+5255 +...+Buzy Ts Hhig 30061 7

= B7P(x.) 1
i o[(lfg):a

min mur

X Qumc%or\
2 layey NN can appiaoximale any
22



Overfitting and Underfitting

Overfitting is fitting the noise in ad-  "{f1Ha Swa‘t Powq(
dition to the signal. Underfitting is

not fitting the signal well. In reality,  CoreS 3{@&1'

it is very difficult to be able to tell ! \
the signal from the noise. (es ‘90'\ schili y
Which is a better fit? — Spideﬂmﬁﬂ 's
Try a real situation. Below, y-axis is Uncle

the freﬁfmoy of an event and x-axis
is the magnitude. It is clear that as
magnitude increases, frequency de-
creases.

1000+ (/

1004

707?"} «éng

0.1+

0.01 -

0.001 4

0.0001 -
45 50 55

This example is taken frym Nate Silver’s book.

80 ) 85 9.0 95
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Which model is a better fit? blue or red?

000014 - - -
45 50 55

60 65 20 80 85 90 95
EG\Y‘Pf\qu 0 Maan}—{'ucj@
Another example: Which model is

a better fit? black or red? Data is
denoted by circle.

25
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Complex models overfit easily

Circles are data points, green line is the truth & red line is
the model fit. M is the maximum degree in the generated

polylllomi$ @(%SIS‘-'— [‘]c)@\ Q\\g

1} o M=o | 1} o M=1
o Q N o Q N
t _l t
o - o) o o
of N 1 of © -
/I ° o ° o
. / o . o
t\
0 /r‘u’YV\ . 1 0 . 1
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Occam’s razor

One solution is dictated by Occam’s
razor which states that “Simpler
models are better — in absence of
certainty.”

Sometimes, if you increase the
amount of data, you might reduce
overfitting. But, when unsure,
choose a simple model over a com-
plicated one.

Additional Notes

u\/\”\y yOu CI,OY\/’U(/
heed ’b EQ 50
deep all The ﬁ”?“

Read about overfitting in the paper by Pedro Domingos (section 3 and 5

of “A few useful things to know about machine learning”). You can also

read Nate Silver’s book on “The signal and the noise” (the earthquake

example is taken from this book).

26



7 Solutions: Regularization

What is regularization?

Through regularization, we can pe-
nalize complex models and favor
simpler ones:

| NN —

The second term is a regularizer
(with A > 0). The main point here
is that an input variable weighted by
a small 5; will have less influence on
the output.

Regularization Parameter

The parameter A can be tuned to
reduce overfitting. But, how do you
choose A7

The generalization error

The generalization error of a learn-
ing method is the expected predic-
tion error for unseen data, i.e. mis-
takes made on the data that we are
coing to see in the future. This
quantifies how well the method gen-
eralizes.

27
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Simulating the future Test /

Ideally, we should choose A to mini- ’rfa]y\ \/altda"'l‘on
mize the mistakes that will be made  —~—" """

in the future. Obviously, we do not

have the future data, but we can al- 1 N
ways simulate the future using the
data in hand.

Splitting the data Qqno!,sm‘y N

For this purpose, Wemata 9
into train and validation sets, e.g.

80% as training data and 20% as

validation data. We pretend that T

the validation set is the future data.

We fit our model on the training set
and compute a prediction-error on@' Cheose a )\

the validation set. This gives us an () SP(I{' data
esttmate of the generalization error @_ £4 ,[,m‘m;v\? Ada

(one instant of the future). r . 2
. n :
(£) K™% + NS,

2105 ::/Ltr/m . ﬁ m}“}“a 3‘+q
-‘ £) Complde L (B) on fost
1 ! ““”‘\7 o I T T ! “:”” e @ P e £(&) onpoqi:* °

[
10"

H
e
h
Far)
o
(3>
&

Test RMSE
[
[
(o)}
|
é

10°
lambda

=
o

= 7
© |

DO 5 9
CX) =
I



Cross-validation

Random splitting (aka bootstrap) is
not an efficient method.

K-fold cross-validation allows us to
do this efficiently. We randomly
partition the data into K groups.
We train on K — 1 groups and test
on the remaining group. We re-
peat this until we have tested on all

—I'es‘t K sets. We then average the results.
A o

923 cieeeaa-- N

Cross-validation returns an estimate
of the generalization error.

—

Additional Notes

Details on cross-validation are in Chapter 7 in the book by Hastie, Tib-
shirani, and Friedman (HTF). You can also read about bootstrap in

Section 7.11 in HTF book. This method is related to random splitting

and is a very popular method.
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8 Bias-Variance Decomposition

What is bias-variance?

One natural question is how does
the test error vary wrt A7 When
A is high, the model underfits,
while when A is small, the model
overfits. Therefore, a good value is Smple N
somewhere in between. -

Test eryorr

Cowplex

Bias-variance decomposition ex-
plains the shape of this curve.

Low Variance High Variance

Bias

Low

High Bias
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(Generalization error

Given training data Dy, of size N,
we would like to estimate the ex-
pected error made in future predic-
tion. This error is the generalization 2
error. Below is a definition suppose
that we have infinite test data Dy,

teErr(Dy,) = Epte[{g — f(x)}]
ol fve fuler

Generalization error is different
the training error which measures
how well you fit the data.

N

trErr(Dy,) = Z[{yn — f(xn)}]

n=1

31



Errors vs model complexity

As we increase the model complex-
ity, how do these errors vary? The
blue line shows training error for a
dataset with N = 50, while the red
line shows the generalization error
for that dataset. o

Simple model have high train and
generalization error since they have
a high bias, while complex model
have low train but high generaliza-
tion error because they have high
variance.

AN High Bias Low Bias

Low Variance High Variance

-

1.0

Prediction Error
0.6 0.8

0.4

0.2
|

|
|
'
t
4
L
!

e mnln am = =
-~

T+ |
0 5 10 15 20 b 25 30 35
est

Model Complexity (df) MDJQ l
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Bias-variance decompo-
sition

The shape of these curves can be ex-
plained using bias-variance decom-
position. The following four points

can be explained by using the de-
composition:

1. both bias and variance con-
tribute to generalization error.

2. For bias, both model-bias and
estimation-bias are important.
When we increase model com-
plexity, we increase general-
ization error due to increased
variance.
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9 Recent Advances

Deep Learning & Over-
fitting

Deep learning has shown a new (but
old) way to combat overfitting. For
many applications, more data and
deep architecture combined with
stochastic gradient-descent is able
to get us to a good minimum which
generalizes well.

Challenges

There are many challenges ahead.
Learning from nasty, unreliable
data still remains a challenge (e.g.
small sample size, redundant data,
non-stationary data, sequential
learning).

On the other hand, living beings -
even young ones - are very good in
dealing with such data. How do they
do it, and how can we design ML
methods that can learn like them?
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