
Fundamentals of
Machine Learning

(Part I)

Mohammad Emtiyaz Khan
AIP (RIKEN), Tokyo

http://emtiyaz.github.io

emtiyaz.khan@riken.jp

April 12, 2018

©Mohammad Emtiyaz Khan 2018

1

Goals

Understand (some) fundamentals of Machine learning1.

Part I : Understand the basic set-up to analyze
data under a machine-learning framework.

1. Before Machine Learning.

2. ML Problem: Regression.

3. Model: Linear Regression.

4. Cost Function: MSE.

5. Algorithm 1: Gradient Descent.

6. Algorithm 2: Least Squares.

Part II : Understand what can go wrong when
learning from data and how to correct it.

6. Challenge: Overfitting.

7. Solutions: Regularization.

8. Bias-Variance Decomposition.

9. Recent Advances.

1Some figures are taken from Hastie, Tibshirani, and Friedman’s book on
statistical learning and also from Chris Bishop’s Machine learning book

1

1 Before Machine Learning

Acquiring Data

Data is the most important com-
ponent of modern Machine Learn-
ing. There are many important
steps that can have a huge impact
on the performance of a machine-
learning system. To name a few:
data collection, cleaning, validation,
pre-processing, and storage.

Picture taken from “Doing data science”.

2

Defining an ML problem

Once we have some data, the next
step is to re-define the real-world
problem in the context of data, and
then to convert it to a machine-
learning problem.

ML problems can be categorized
into 3 main types: supervised, un-
supervised, and reinforcement learn-
ing. In practice, a successful end-to-
end system might require a combi-
nation of these problems.

3

2 ML Problem: Regression

What is regression?

Regression is to relate input vari-
ables to the output variable, to ei-
ther predict outputs for new inputs
and/or to understand the effect of
the input on the output.

Dataset for regression

In regression, data consists of pairs
(yn,xn), where yn is the n’th out-
put and xn is a vector of D inputs.
Number of pairs N is the data-size
and D is the dimensionality.

Examples of regression

(a) Height is correlated with weight. Taken from

“Machine Learning for Hackers”

4

(b) How does advertisement in TV, radio, and newspaper affect sales? Taken from the book ”An

Introduction to statistical learning”

Two goals of regression

In prediction, we wish to predict
the output for a new input vector,
e.g. what is the weight of a person
who is 170 cm tall?

In interpretation, we wish to under-
stand the effect of inputs on output,
e.g. are taller people heavier too?

The regression function

For both the goals, we need to find a
function that approximates the out-
put “well enough” given inputs.

yn ≈ f (xn), for all n

5

Additional Notes

Prediction vs Interpretation

Some questions to think about: are these prediction tasks or interpreta-

tion task?

1. What is the life-expectancy of a person who has been smoking for

10 years?

2. Does smoking cause cancer?

3. When the number of packs a smoker smokes per day doubles, their

predicted life span gets cut in half?

4. A massive scale earthquake will occur in California within next

30 years.

5. More than 300 bird species in north America could reduce their

habitat by half or more by 2080.

6

3 Model: Linear Regression

What is it?

Linear regression is a model that as-
sumes a linear relationship between
inputs and the output.

Why learn about linear regression?

Plenty of reasons: simple, easy to
understand, most widely used, eas-
ily generalized to non-linear mod-
els. Most importantly, you can learn
almost all fundamental concepts of
ML with regression alone.

7

Simple linear regression

With only one input dimension, it is
simple linear regression.

yn ≈ f (xn) := β0 + β1xn1

Here, β0 and β1 are parameters of
the model.

Multiple linear regression

With multiple input dimension, it is
multiple linear regression.

yn ≈ f (xn)

:= β0 + β1xn1 + . . . + βDxnD

= x̃Tnβ (1)

Learning/estimation/fitting

Given data, we would like to find
β = [β0, β1, . . . , βD]. This is called
learning or estimating the parame-
ters or fitting the model.

8

Additional Notes

p > n Problem

Consider the following simple situation: You have N = 1 and you want

to fit y1 ≈ β0 + β1x11, i.e. you want to find β0 and β1 given one pair

(y1, x11). Is it possible to find such a line?

This problem is related to something called p > n problem. In our nota-

tion, this will be called D > N problem, i.e. the number of parameters

exceeds number of data examples.

Similar issues will arise when we use gradient descent or least-squares to

fit a linear model. These problems are all solved by using regularization,

which we will learn later.

9

4 Cost Function: MSE

Motivation
Consider the following models.

1-parameter model: yn ≈ β0

2-parameter model: yn ≈ β0 + β1xn1

How can we estimate (or guess) val-
ues of β given the data D?

What is a cost function?
Cost functions (or utilities or en-
ergy) are used to learn parameters
that explain the data well. They de-
fine how costly our mistakes are.

Two desirable properties of cost functions

When y is real-valued, it is desirable
that the cost is symmetric around
0, since both +ve and -ve errors
should be penalized equally.

Also, our cost function should pe-
nalize “large” mistakes and “very-
large” mistakes almost equally.

10

Mean Square Error (MSE)

MSE is one of the most popular cost
function.

MSE(β) :=
1

2N

N∑
n=1

[yn − f (xn)]2

Does it have both the properties?

An exercise for MSE
Compute MSE for 1-param model:

L(β0) :=
1

2N

N∑
n=1

[yn − β0]2 (2)

Each row contains a yn and column
is β0. First, compute MSE for for
yn = {1, 2, 3, 4} and draw MSE as
a function of β0 (by adding the first
four rows). Then add yn = 20 to
it, and redraw MSE. What do you
observe and why?

yn\β0 1 2 3 4 5 6 7

1

2

3

4

MSE

20

MSE

11

Additional Notes

A question for cost functions

Is there an automatic way to define loss functions?

Nasty cost functions: Visualization

See Andrej Karpathy Tumblr post for many cost functions
gone “wrong” for neural network. http://lossfunctions.
tumblr.com/.

12

http://lossfunctions.tumblr.com/
http://lossfunctions.tumblr.com/

5 Algorithm 1: Gradient Descent

Learning/estimation/fitting

Given a cost function L(β), we wish
to find β∗ that minimizes the cost:

min
β
L(β), subject to β ∈ RD+1

This is learning posed as an opti-
mization problem. We will use an
algorithm to solve the problem.

Grid search
Grid search is one of the simplest
algorithms where we compute cost
over a grid (of say M points) to find
the minimum. This is extremely
simple and works for any kind of
loss when we have very few param-
eters and the loss is easy to compute.

For a large number of parameters,
however, grid search has too many
“for-loops”, resulting in exponential
computational complexity. Choos-
ing a good range of values is another
problem.

Are there any other issues?

13

Follow the gradient

A gradient (at a point) is the slope
of the tangent (at that point). It
points to the direction of largest
increase of the function.

For 2-parameter model, MSE is
shown below.
(I used yT = [2,−1, 1.5] and xT = [−1, 1,−1]).

−10
−5

0
5

10

−10
−5

0
5

10
0

20

40

60

80

100

120

140

160

β
0

β
1

14

Batch gradient descent

To minimize the function, take a
step in the (opposite) direction of
the gradient

β(k+1) ← β(k) − α∂L(β(k))

∂β

where α > 0 is the step-size (or
learning rate).

Gradient descent for 1-parameter
model to minimize MSE:

β
(k+1)
0 = (1− α)β

(k)
0 + αȳ

Where ȳ =
∑

n yn/N . When is this
sequence guaranteed to converge?

Gradients for MSE

L(β) =
1

2N

N∑
n=1

(yn − x̃Tnβ)2 (3)

then the gradient is given by,

∂L
∂β

= − 1

N

N∑
n=1

(yn − x̃Tnβ)x̃n (4)

What is the computational complex-
ity of batch gradient descent?

15

Stochastic gradient descent

When N is large, choose a random
pair (xi, yi) in the training set and
approximate the gradient:

∂L
∂β
≈ − 1

N

[
N(yi − x̃Ti β)x̃i

]
(5)

Using the above “stochastic” gradi-
ent, take a step:

β(k+1) = β(k) + α(k)(yi − x̃Ti β
(k))x̃i

What is the computational com-
plexity?

For convergence, αk → 0 “appro-
priately”. One such condition called
Robbins-Monroe condition suggests
to take αk such that:

∞∑
k=1

α(k) =∞,
∞∑
k=1

(α(k))2 <∞

(6)

One way to obtain such sequence
is α(k) = 1/(1 + k)r where r ∈
(0.5, 1).

16

5.1 Algorithm 2: Least Squares

In rare cases, we can compute
the minimum of the cost function
analytically. Linear regression using
MSE is one such case. The solution
is obtained using normal equations.
This is called least squares.

To derive the equation, we use the
optimality conditions. See the lec-
ture notes for Gradient Descent.

∂L(β∗)

∂β
= 0

Using this, derive the normal equa-
tion for 1-parameter model.

17

Normal equations

Recall the expression of the gradient
for multiple linear regression:

∂L
∂β

= − 1

N
X̃
T
e = − 1

N
X̃
T

(y − X̃β)

Set it to zero to get the normal equa-
tions for linear regression.

X̃
T
e = X̃

T
(y − X̃β) = 0

implying that the error is orthogonal

to rows of X̃
T

and columns of X̃.

18

Geometric Interpretation

Denote the d’th column of X̃ by x̄d.

y =

y1

y2
...
yN

 , X̃ =

1 x11 x12 . . . x1D

1 x21 x22 . . . x2D
...
1 xN1 xN2 . . . xND

The normal equations suggest to
choose a vector in the span of X̃.
The following figure illustrates this
(taken from Bishop’s book).

S
t

yϕ1

ϕ2

Least-squares

When X̃
T
X̃ is invertible, we have a

closed-form expression for the mini-
mum.

β∗ = (X̃
T
X̃)−1X̃

T
y

We can predict values for a new x∗.

ŷ∗ = x̃T∗β
∗ = x̃T∗ (X̃

T
X̃)−1X̃

T
y

19

Invertibility and uniqueness

The Gram matrix X̃
T
X̃ is invertible

iff X̃ has full column rank.

Proof: Assume N > D. The fun-
damental theorem of linear algebra
states that the dimensionality of null
space is zero for full column rank.
This implies that the Gram matrix
is positive definite, which implies in-
vertibility.

Rank deficiency and ill-conditioning

Unfortunately, X̃ could often be
rank deficient in practice, e.g. when
D > N , or when the columns x̄d are
(nearly) collinear. In the later case,
the matrix is ill-conditioned, leading
to numerical issues.

Summary of linear regression

We have studied three methods:

1. Grid search

2. (Stochastic) gradient descent

3. Least squares

20

Additional Notes

Implementation

There are many ways to implement matrix inversion, but using QR de-

composition is one of the most robust ways. Matlab’s backslash operator

implements this (and much more) in just one line.

1 beta = inv(X'*X) * (X'*y)
2 beta = pinv(X'*X) * (X'*y)
3 beta = (X'*X) \ (X'*y)

For robust implementation, see Sec. 7.5.2 of Kevin Murphy’s book.

To do

1. Revise linear algebra to understand why X̃ needs to have full

rank. Read the Wikipedia page on rank of a matrix.

2. For details on the geometrical interpretation, see Bishop 3.1.2.

However, better to read this after the lecture on “basis-function

expansion”. Also, note that notation in the book is different. This

might make the reading difficult.

3. Understand matrix inversion robust implementation and play with

it using the code for labs. Read Kevin Murphy’s section 7.5.2 for

details.

4. Understand ill-conditioning. Reading about the “condition num-

ber” in Wikipedia will help. Also, understanding SVD is essen-

tial. Here is another link provided by Dana Kianfar (EPFL)

http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf.

5. Work out the computational complexity of least-squares (use the

Wikipedia page on computational complexity).

21

http://www.cs.uleth.ca/~holzmann/notes/illconditioned.pdf

6 Challenge: Overfitting

Motivation
Linear model can be easily modified
to obtain more powerful non-linear
model. We can use basis function
expansion to get a non-linear regres-
sion model, and then use a sequence
of these models to construct a deep
model.

Consider simple linear regression.
Given one-dimensional input xn, we
can generate a polynomial basis.

φ(xn) = [1, xn, x
2
n, x

3
n, . . . , x

M
n]

Then we fit a linear model using the
original and the generated features:

yn ≈ β0 +β1xn+β2x
2
n+ . . .+βMx

M
n

−1 0 1
−1

−0.5

0

0.5

1

22

Overfitting and Underfitting

Overfitting is fitting the noise in ad-
dition to the signal. Underfitting is
not fitting the signal well. In reality,
it is very difficult to be able to tell
the signal from the noise.

Which is a better fit?

Try a real situation. Below, y-axis is
the frequency of an event and x-axis
is the magnitude. It is clear that as
magnitude increases, frequency de-
creases.

This example is taken from Nate Silver’s book.

23

Which model is a better fit? blue or red?

Another example: Which model is
a better fit? black or red? Data is
denoted by circle.

24

Complex models overfit easily

Circles are data points, green line is the truth & red line is
the model fit. M is the maximum degree in the generated
polynomial basis.

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

If you increase the amount of data, overfitting might reduce.

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

25

Occam’s razor
One solution is dictated by Occam’s
razor which states that “Simpler
models are better – in absence of
certainty.”

Sometimes, if you increase the
amount of data, you might reduce
overfitting. But, when unsure,
choose a simple model over a com-
plicated one.

Additional Notes

Read about overfitting in the paper by Pedro Domingos (section 3 and 5

of “A few useful things to know about machine learning”). You can also

read Nate Silver’s book on “The signal and the noise” (the earthquake

example is taken from this book).

26

7 Solutions: Regularization

What is regularization?

Through regularization, we can pe-
nalize complex models and favor
simpler ones:

min
β

L(β) +
λ

2N

M∑
j=1

β2
j

The second term is a regularizer
(with λ > 0). The main point here
is that an input variable weighted by
a small βj will have less influence on
the output.

Regularization Parameter

The parameter λ can be tuned to
reduce overfitting. But, how do you
choose λ?

The generalization error

The generalization error of a learn-
ing method is the expected predic-
tion error for unseen data, i.e. mis-
takes made on the data that we are
going to see in the future. This
quantifies how well the method gen-
eralizes.

27

Simulating the future

Ideally, we should choose λ to mini-
mize the mistakes that will be made
in the future. Obviously, we do not
have the future data, but we can al-
ways simulate the future using the
data in hand.

Splitting the data

For this purpose, we split the data
into train and validation sets, e.g.
80% as training data and 20% as
validation data. We pretend that
the validation set is the future data.
We fit our model on the training set
and compute a prediction-error on
the validation set. This gives us an
estimate of the generalization error
(one instant of the future).

10
−2

10
−1

10
0

10
1

1.16

1.17

1.18

lambda

T
e

s
t

R
M

S
E

10
−3

10
−2

10
−1

10
0

10
1

1

1.05

1.1

lambda

T
ra

in
 R

M
S
E

28

Cross-validation
Random splitting (aka bootstrap) is
not an efficient method.

K-fold cross-validation allows us to
do this efficiently. We randomly
partition the data into K groups.
We train on K − 1 groups and test
on the remaining group. We re-
peat this until we have tested on all
K sets. We then average the results.

run 1

run 2

run 3

run 4

Cross-validation returns an estimate
of the generalization error.

Additional Notes

Details on cross-validation are in Chapter 7 in the book by Hastie, Tib-

shirani, and Friedman (HTF). You can also read about bootstrap in

Section 7.11 in HTF book. This method is related to random splitting

and is a very popular method.

29

8 Bias-Variance Decomposition

What is bias-variance?

One natural question is how does
the test error vary wrt λ? When
λ is high, the model underfits,
while when λ is small, the model
overfits. Therefore, a good value is
somewhere in between.

Bias-variance decomposition ex-
plains the shape of this curve.

30

Generalization error

Given training data Dtr of size N ,
we would like to estimate the ex-
pected error made in future predic-
tion. This error is the generalization
error. Below is a definition suppose
that we have infinite test data Dte,

teErr(Dtr) := EDte
[{y − f (x)}2]

Generalization error is different from
the training error which measures
how well you fit the data.

trErr(Dtr) :=

N∑
n=1

[{yn − f (xn)}2]

31

Errors vs model complexity

As we increase the model complex-
ity, how do these errors vary? The
blue line shows training error for a
dataset with N = 50, while the red
line shows the generalization error
for that dataset.

Simple model have high train and
generalization error since they have
a high bias, while complex model
have low train but high generaliza-
tion error because they have high
variance.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Model Complexity (df)

Pr
ed

ic
tio

n
Er

ro
r

High Bias Low Bias
High VarianceLow Variance

FIGURE 7.1. Behavior of test sample and training
sample error as the model complexity is varied. The
light blue curves show the training error err, while the
light red curves show the conditional test error ErrT
for 100 training sets of size 50 each, as the model com-
plexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

32

Bias-variance decompo-
sition

The shape of these curves can be ex-
plained using bias-variance decom-
position. The following four points
can be explained by using the de-
composition:

1. both bias and variance con-
tribute to generalization error.

2. For bias, both model-bias and
estimation-bias are important.
When we increase model com-
plexity, we increase general-
ization error due to increased
variance.

3. Regularization increases esti-
mation bias while reducing
variance.

33

9 Recent Advances

Deep Learning & Over-
fitting

Deep learning has shown a new (but
old) way to combat overfitting. For
many applications, more data and
deep architecture combined with
stochastic gradient-descent is able
to get us to a good minimum which
generalizes well.

Challenges

There are many challenges ahead.
Learning from nasty, unreliable
data still remains a challenge (e.g.
small sample size, redundant data,
non-stationary data, sequential
learning).

On the other hand, living beings -
even young ones - are very good in
dealing with such data. How do they
do it, and how can we design ML
methods that can learn like them?

34

	Before Machine Learning
	ML Problem: Regression
	Model: Linear Regression
	Cost Function: MSE
	Algorithm 1: Gradient Descent
	Algorithm 2: Least Squares

	Challenge: Overfitting
	Solutions: Regularization
	Bias-Variance Decomposition
	Recent Advances

